DU A Unit Admission Question Solution 2014-2015
āύāĻŋāĻā§āϰ āĻāĻŋāĻĄāĻŋāĻāϤ⧠āĻĻā§āĻā§ āύāĻžāĻ āĻŦāĻŋāϏā§āϤāĻžāϰāĻŋāϤ:
āĻā§āϰā§āϏāĻāĻŋ āĻāĻŋāύāϤ⧠āĻĒāĻžāĻļā§āϰ āĻŦāĻžāĻāύāĻāĻŋ āĻā§āϞāĻŋāĻ āĻāϰ:  
āĻā§āϰā§āϏā§āϰ āĻĄā§āĻŽā§ āĻāĻŋāĻĄāĻŋāĻ(āĻāĻāĻžāĻŦā§ āĻĒāĻĻāĻžāϰā§āĻĨāĻŦāĻŋāĻā§āĻāĻžāύ+āϰāϏāĻžā§āύ+āĻāĻā§āĻāϤāϰāĻāĻŖāĻŋāϤ āĻāϰ āĻŦāĻŋāĻāϤ āĻŦāĻŋāĻļ āĻŦāĻāϰā§āϰ āϏāĻāϞ āĻĒā§āϰāĻļā§āύā§āϰ āϏāĻŽāĻžāϧāĻžāύ āĻĨāĻžāĻāĻŦā§ āĻāĻŋāĻĄāĻŋāĻāϤā§)
āĻĒāĻĻāĻžāϰā§āĻĨāĻŦāĻŋāĻā§āĻāĻžāύ
- āĻĻā§āĻāĻāĻŋ āĻā§āĻā§āĻāϰ \(\overrightarrow{\mathbf{A}}=3 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}\) āĻāĻŦāĻ \(\overrightarrow{\mathbf{B}}=5 \hat{\mathrm{i}}+5 \hat{\mathbf{k}}\) āĻāϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻā§āĻŖ āĻāϤ?
- 60°
- 30°
- 45°
- 90°
Ans. 60°
- āĻāĻāĻāĻŋ āĻāĻŖāĻž 2.0 m āĻŦā§āϝāĻžāϏāĻžāϰā§āϧā§āϰ āĻŦā§āϤā§āϤāĻžāĻāĻžāϰ āĻĒāĻĨā§ āĻĒā§āϰāϤāĻŋ āĻŽāĻŋāύāĻŋāĻā§ 30 āĻŦāĻžāϰ āĻāĻŦāϰā§āϤāύ āĻāϰā§āĨ¤ āĻāϰ āϰā§āĻāĻŋāĻ āĻŦā§āĻ āĻāϤ?
- \( \pi \mathrm{ms}^{-1}\)
- \(2 \pi \mathrm{ms}^{-1}\)
- \(4 \pi \mathrm{ms}^{-1}\)
- \(0.5 \pi \mathrm{ms}^{-1}\)
Ans. \(2 \pi \mathrm{ms}^{-1}\)
- āĻĢāĻžāϰā§āύāĻšāĻžāĻāĻ āϏā§āĻā§āϞā§āϰ āĻā§āύ āϤāĻžāĻĒāĻŽāĻžāϤā§āϰāĻž āϏā§āύā§āĻāĻŋāĻā§āϰā§āĻĄ āϏā§āĻā§āϞā§āϰ āĻĒāĻžāĻ ā§āϰ āϤāĻŋāύāĻā§āĻŖ?
- 160°
- 80°
- 320°
- 40°
Ans. 80°
- āĻāĻāĻāĻŋ āϤāĻĄāĻŧāĻŋā§ āĻĻā§āĻŦāĻŋāĻĒā§āϞā§āϰ āĻāύā§āϝ āϤāĻĄāĻŧāĻŋā§āĻā§āώā§āϤā§āϰ, āĻĻā§āϰāϤā§āĻŦ r āĻāϰ āϏāĻžāĻĨā§ āĻāĻŋāĻāĻžāĻŦā§ āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻšāϝāĻŧ?
- \(r^{-1}\)
- \(r^{-3}\)
- \(r^{-2}\)
- \(r\)
Ans. \(r^{-3}\)
- āϧāϰāĻž āϝāĻžāĻ, Co-60 āϤā§āĻāϏā§āĻā§āϰāĻŋāϝāĻŧ āĻĒāĻĻāĻžāϰā§āĻĨā§āϰ āĻ
āϰā§āϧāĻžāϝāĻŧā§ 5 āĻŦā§āϏāϰāĨ¤ āĻāϤ āĻŦā§āϏāϰ āĻĒāϰ⧠āĻ āϤā§āĻāϏā§āϤā§āϰā§āϝāĻŧ āĻĒāĻĻāĻžāϰā§āĻĨā§āϰ āϤā§āĻāϏā§āĻā§āϰāĻŋāϝāĻŧāϤāĻž āĻāĻŽā§ āĻĒā§āϰāĻžāĻĨāĻŽāĻŋāĻ āĻ
āĻŦāϏā§āĻĨāĻžāϰ 1/32- āϤ⧠āĻšā§āϰāĻžāϏ āĻĒāĻžāĻŦā§?
- 10 years
- 16 years
- 25 years
- 32 years
Ans. 25 years
- āĻāĻāĻāĻŋ āĻĻāĻŋāĻ āĻĒāϰāĻŋāĻŦāϰā§āϤ⧠āĻĒā§āϰāĻŦāĻžāĻšāĻā§ \(I = 50 sin 300 \pi t\) āϏāĻŽā§āĻāϰāĻŖā§ āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšāϞā§āĨ¤ āĻ āĻĒā§āϰāĻŦāĻžāĻšā§āϰ āĻāĻŽā§āĻĒāĻžāĻā§āĻ āĻāϤ āĻšāĻŦā§?
- 450 Hz
- 400 Hz
- 220 Hz
- 150 Hz
Ans. 150 Hz
- 5 \(\mu \mathrm{F}\) āĻāϰ 5āĻāĻŋ āϧāĻžāϰāĻ āϏāĻŋāϰāĻŋāĻ āϏāĻāϝā§āĻā§ āϝā§āĻā§āϤ āĻāϰāĻž āĻšāϞā§āĨ¤ āĻ āϧāĻžāϰāĻāĻā§āϞā§āϰ āϏāĻŽāϤā§āϞā§āϝ āϧāĻžāϰāĻāϤā§āĻŦ āĻšāĻā§āĻā§-
- 5 \(\mu \mathrm{F}\)
- 4 \(\mu \mathrm{F}\)
- 1 \(\mu \mathrm{F}\)
- 10 \(\mu \mathrm{F}\)
Ans. 1 \(\mu \mathrm{F}\)
- āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§ āĻā§āϏ āĻĨā§āĻā§ āĻļāĻŦā§āĻĻ āϤāϰāĻā§āĻ āĻŦā§āϰ āĻšāĻā§āĻā§āĨ¤ āĻā§āύ⧠āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻļāĻŦā§āĻĻā§āϰ āϤā§āĻŦā§āϰāϤāĻž āĻā§āϏ āĻĨā§āĻā§ āĻĻā§āϰāϤā§āĻŦā§āϰ-
- āϏāĻŽāĻžāύā§āĻĒāĻžāϤāĻŋāĻ
- āĻŦāϰā§āĻā§āϰ āϏāĻŽāĻžāύā§āĻĒāĻžāϤāĻŋāĻ
- āĻŦā§āϝāϏā§āϤāĻžāύā§āĻĒāĻžāϤāĻŋāĻ
- āĻŦāϰā§āĻā§āϰ āĻŦā§āϝāϏā§āϤāĻžāύā§āĻĒāĻžāϤāĻŋāĻ
Ans. āĻŦāϰā§āĻā§āϰ āĻŦā§āϝāϏā§āϤāĻžāύā§āĻĒāĻžāϤāĻŋāĻ
- āĻāĻāĻāĻŋ 13N āĻāĻāύā§āϰ āĻ āĻāĻāĻāĻŋ 12N āĻāĻāύā§āϰ āĻĻā§āĻāĻāĻŋ āĻŦāϏā§āϤ⧠āĻāĻāĻāĻŋ āĻāϰāĻŦāĻŋāĻšā§āύ āĻĻāĻĄāĻŧāĻŋāϰ āĻĻā§āĻŦāĻžāϰāĻž āĻāϰā§āώāĻŖ āĻŦāĻŋāĻšā§āύ āĻāĻĒāĻŋāĻāϞā§āϰ āĻāĻĒāϰ āĻā§āϞāύā§āϤāĨ¤ 13 N āĻāĻāύā§āϰ āĻŦāϏā§āϤā§āϰ āύāĻŋāĻŽā§āύāĻŽā§āĻā§ āϤā§āϰāĻŖ āĻŽā§āĻā§āϤāĻāĻžāĻŦā§ āĻĒāĻĄāĻŧāύā§āϤ āĻŦāϏā§āϤā§āϰ āϤā§āĻŦāϰāĻŖā§āϰ āϝāϤāĻā§āĻŖ āϤāĻž āĻšāϞā§-
- 1/12
- 1/13
- 1/25
- 13/25
Ans. 1/25
- āϏāĻŽāĻžāύ āĻāϰ āĻŦāĻŋāĻļāĻŋāώā§āĻ āϤāĻŋāύāĻāĻŋ āĻāĻŖā§āĻĄ A, B, C āĻĻāĻĄāĻŧāĻŋāϰ āĻĻā§āĻŦāĻžāϰāĻž āĻāĻŋāϤā§āϰ⧠āĻĒā§āϰāĻĻāϰā§āĻļāĻŋāϤ āϰā§āĻĒā§ āϏāĻāϝā§āĻā§āϤāĨ¤ āĻāĻŖā§āĻĄ C, F āĻŦāϞ āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāύāĻž āĻšāϞ⧠āϏāĻŽā§āĻĒā§āϰā§āĻŖ āĻŦā§āϝāĻŦāϏā§āĻĨāĻžāĻāĻŋ āϤā§āĻŦāϰāĻŋāϤ āĻšāϝāĻŧāĨ¤ āĻāϰā§āώāĻŖ āĻāĻĒā§āĻā§āώāĻž āĻāϰāϞ⧠āĻāĻŖā§āĻĄ B āĻāϰ āĻāĻĒāϰ āĻŽā§āĻ āĻŦāϞ āĻšāϞā§-
- 0
- F/3
- F/2
- 2F/3
Ans. 2F/3
- āĻāĻāĻāĻŋ āύāϞāĻžāĻāĻžāϰ āϤāĻžāĻŽāĻžāϰ āϤāĻžāϰā§āϰ āϰā§āϧ RāĨ¤ āĻāϝāĻŧāϤāύ āϏāĻŽāĻžāύ āϰā§āĻā§ āϤāĻžāϰāĻāĻŋāϰ āĻĻā§āϰā§āĻā§āϝ āĻĻā§āĻŦāĻŋāĻā§āĻŖ āĻāϰāĻž āĻšāϞ⧠āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āϰā§āϧ āĻāϤ?
- 2R
- 4R
- 8R
- R/2
Ans. 4R
- āĻāĻāĻāĻŋ āĻā§āĻŽā§āĻŦāĻ āĻā§āώā§āϤā§āϰā§āϰ āϞāĻŽā§āĻŦ āĻŦāϰāĻžāĻŦāϰ āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻāύ [āĻāĻžāϰā§āĻ e] āĻāĻāĻ āĻā§āĻŽā§āĻŦāĻ āĻā§āώā§āϤā§āϰ⧠āϞāĻŽā§āĻŦ āĻŦāϰāĻžāĻŦāϰ āĻāϞāĻŽāĻžāύ āĻāĻāĻāĻŋ āĻāϞāĻĢāĻž āĻāĻŖāĻžāϰ [āĻāĻžāϰā§āĻ 2e] āϏāĻŽāĻžāύ āĻŦāϞ āĻ
āύā§āĻāĻŦ āĻāϰā§āĨ¤ āϤāĻžāĻĻā§āϰ āĻĻā§āϰā§āϤāĻŋāϰ āĻ
āύā§āĻĒāĻžāϤ \(\mathbf{V}_{\text {proton }} / \mathbf{V}_{\text {alpha }}\) āĻšāϞā§-
- 0.5
- 2
- 4
- 8
Ans. 2
- \(\varepsilon_{0} \mu_{0}\) āĻāϰ āĻāĻāĻ āύāĻŋāĻŽā§āύā§āϰ āĻā§āύāĻāĻŋāϰ āĻāĻāĻā§āϰ āϏāĻŽāĻžāύ?
- (velocity) \(^{2}\)
- (velocity) \(^{1 / 2}\)
- \(1 /\) velocity
- \(1 /\) (velocity) \(^{2}\)
Ans. \(1 /\) (velocity) \(^{2}\)
- \(9.8 \mathrm{~ms}^{-1}\) āĻŦā§āĻā§ āĻāĻāĻāĻŋ āĻĒāĻžāĻĨāϰ āĻāĻĒāϰā§āϰ āĻĻāĻŋāĻā§ āύāĻŋāĻā§āώā§āĻĒ āĻāϰāĻž āĻšāϞā§āĨ¤ āĻāĻāĻŋ āĻāϤ āϏāĻŽāϝāĻŧ āĻĒāϰ⧠āĻā§āĻĒā§āώā§āĻ ā§ āĻĢāĻŋāϰ⧠āĻāϏāĻŦā§?
- 5 s
- 2 s
- 3 s
- 10 s
Ans. 2 s
- āϝāĻĻāĻŋ āĻāĻāĻāĻŋ āĻŦāϏā§āϤ⧠āĻāϞā§āϰ āĻŦā§āĻā§ āϧāĻžāĻŦāĻŋāϤ āĻšāϝāĻŧ, āϤāĻŦā§ āĻāϰ āĻāϰ āĻšāĻŦā§-
- 0
- \(\infty \)
- āĻ āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ
- āĻā§āύā§āĻāĻŋāĻ āύāϝāĻŧ
Ans. \(\infty \)
- āĻĒāĻžāĻļā§āϰ āĻŦāϰā§āϤāύā§āϤ⧠\(R_3\) āĻāϰ āĻĻā§āĻ āĻĒā§āϰāĻžāύā§āϤ⧠āĻŦāĻŋāĻāĻŦ āĻĒāĻžāϰā§āĻĨāĻā§āϝ āĻšāĻā§āĻā§-
- 5 V
- 2 V
- 8 V
- 6 V
Ans. 8 V
- āĻĻā§āĻāĻāĻŋ āĻāĻžāĻĄāĻŧā§āϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻĻā§āϰāϤā§āĻŦ 150km āĻāĻŦāĻ āĻāĻāĻāĻŋ āĻ
āĻĒāϰāĻāĻŋāϰ āĻĻāĻŋāĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ 60 km/h āĻāĻŦāĻ 40 km/h āĻŦā§āĻā§ āĻāϞāĻā§āĨ¤ āϤāĻžāϰāĻž āĻāϤ āĻāύā§āĻāĻž āĻĒāϰ āĻŽāĻŋāϞāĻŋāϤ āĻšāĻŦā§?
- 2.5 h
- 2.0 h
- 1.75 h
- 1.5 h
Ans. 1.5 h
- āĻā§āύ⧠āĻŦā§āϝāĻā§āϤāĻŋ 30° āĻĸāĻžāϞā§āϰ 5 m āĻāĻāĻā§ āĻāϰā§āώāĻŖāĻŦāĻŋāĻšā§āύ āϤāϞ āĻŦāϰāĻžāĻŦāϰ āĻāĻāĻāĻŋ 100N āϰāĻ āĻā§āύ⧠āϤā§āϞāĻā§āĨ¤ āĻŦā§āϞāĻāĻāĻŋ āϏāĻŽāĻĻā§ā§°āϤāĻŋāϤ⧠āĻāϞāϞ⧠āĻŦā§āϝāĻā§āϤāĻŋ āĻāĻŋ āĻĒāϰāĻŋāĻŽāĻžāĻŖ āĻāĻžāĻ āĻāϰāĻŦā§?
- 250 J
- 500 J
- 0 J
- 100 J
Ans. 250 J
- 33% āĻāϰā§āĻŽāĻĻāĻā§āώāϤāĻž āϏāĻŽā§āĻĒāύā§āύ āĻāĻāĻāĻŋ āϤāĻžāĻĒ āĻāĻā§āĻāĻŋāύ⧠\(9.0 \times 10^{4}\) J āϤāĻžāĻĒāĻļāĻā§āϤāĻŋ āϏāϰāĻŦāϰāĻžāĻš āĻāϰāĻž āĻšāϞā§āĨ¤ āĻāĻā§āĻāĻŋāύāĻāĻŋ āĻāϤāĻā§āĻā§ āϤāĻžāĻĒāĻļāĻā§āϤāĻŋāĻā§ āĻāĻžāĻā§ āϰā§āĻĒāĻžāύā§āϤāϰāĻŋāϤ āĻāϰāϤ⧠āĻĒāĻžāϰāĻŦā§?
- 3000 J
- 8400 J
- 30000 J
- 10000 J
Ans. 30000 J
- āĻĻā§āĻāĻāĻŋ āϏā§āϰāĻļāϞāĻžāĻāĻžāϰ āĻāĻŽā§āĻĒāĻžāĻā§āĻ āϝāĻĨāĻžāĻā§āϰāĻŽā§ 128 Hz āĻ 384 HzāĨ¤ āĻŦāĻžāϝāĻŧā§āϤ⧠āĻļāϞāĻžāĻāĻž āĻĻā§āĻāĻāĻŋ āĻšāϤ⧠āϏā§āώā§āĻ āϤāϰāĻā§āĻ āĻĻā§āϰā§āĻā§āϝā§āϰ āĻ
āύā§āĻĒāĻžāϤ āĻāϤ?
- 3:1
- 1:3
- 2:1
- 1:2
Ans. 3:1
- 6 V āĻļāĻā§āϤāĻŋāϰ āĻā§āϏ āĻĻā§āĻŦāĻžāϰāĻž āĻāĻāĻāĻŋ āĻŦāĻžāϤāĻŋāϰ āĻŽāϧā§āϝ āĻĻāĻŋāϝāĻŧā§ 0.3 A āĻŦāĻŋāĻĻā§āϝā§ā§ 2 min āϧāϰ⧠āĻĒā§āϰāĻŦāĻžāĻšāĻŋāϤ āĻāϰāĻž āĻšāϞā§āĨ¤ āĻāĻ 2 āĻŽāĻŋāύāĻŋāĻā§ āĻŦāĻžāϤāĻŋāĻāĻŋ āĻĻā§āĻŦāĻžāϰāĻž āĻļāĻā§āϤāĻŋ āĻŦā§āϝāϝāĻŧā§āϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ āĻāϤ?
- 12 J
- 1.8 J
- 216 J
- 220 J
Ans. 216 J
- āĻāĻāĻāĻŋ āĻāĻĻāϰā§āĻļ 1:ā§Ē step-down āĻā§āϰāĻžāύā§āϏāĻĢāϰāĻŽāĻžāϰā§āϰ āĻŽā§āĻā§āϝ āĻā§āĻŖā§āĻĄāϞā§āϰ āĻā§āώāĻŽāϤāĻž 10 kw āĻāĻŦāĻ āĻā§āĻŖ āĻā§āĻŖā§āĻĄāϞā§āϤ⧠25A āĻŦāĻŋāĻĻā§āϝā§ā§ āĻĒā§āϰāĻŦāĻžāĻšāĻŋāϤ āĻšāĻā§āĻā§āĨ¤ āĻŽā§āĻā§āϝ āĻā§āĻŖā§āĻĄāϞā§āϰ āĻā§āϞā§āĻā§āĻ āĻāϤ?
- 2500 V
- 3200 V
- 31250 V
- 400 V
Ans. 3200 V
- āύāĻŋāĻŽā§āύā§āϰ āĻā§āύāĻāĻŋ āĻāĻāĻāĻŋ āύāĻŋāĻāĻā§āϞāĻŋāϝāĻŧ āĻĢāĻŋāĻāĻļāύ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻž āĻĒā§āϰāĻĻāϰā§āĻļāύ āĻāϰ⧠āϝā§āĻāĻŋ āĻĨā§āĻā§ āĻĒā§āϰāĻā§āϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖā§ āĻļāĻā§āϤāĻŋ āĻā§āĻĒāĻžāĻĻāĻŋāϤ āĻšāϝāĻŧ?
- \({ }_{92}^{238} \mathrm{U} \rightarrow{ }_{90}^{234} \mathrm{Th}+{ }_{2}^{4} \mathrm{He}\)
- \({ }_{1}^{3} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}\)
- \(\begin{aligned}&236 \\&92\end{aligned} \mathrm{U} \rightarrow \frac{141}{56} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+3_{0}^{1} \mathrm{n}\)
- \({ }_{11}^{24} \mathrm{Na} \rightarrow{ }_{12}^{24} \mathrm{Mg}+{ }_{1}^{0} \mathrm{e}\)
Ans. \({ }_{1}^{3} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}\)
- R āĻŦā§āϝāĻžāϏāĻžāϰā§āϧā§āϰ āĻĒā§āĻĨāĻŋāĻŦā§āϰ āĻĒā§āώā§āĻ ā§ āĻ
āĻāĻŋāĻāϰā§āώ āĻŦāĻŋāĻāĻŦ V āĻšāϞ⧠āĻĒā§āώā§āĻ āĻšāϤ⧠R āĻāĻā§āĻāϤāĻžāϝāĻŧ āĻŦāĻŋāĻāĻŦā§āϰ āĻŽāĻžāύ āĻāϤ?
- V/4
- V/2
- V
- 2V
Ans. V/2
- āĻŽā§āĻā§āϤāĻāĻžāĻŦā§ āĻā§āύ āĻĒāĻĄāĻŧāύā§āϤ āĻŦāϏā§āϤā§āϰ āϤā§āĻŦāϰāĻŖ g āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāϤ⧠āĻāĻŋāϝāĻŧā§ āĻāĻāĻāύ āĻāĻžāϤā§āϰ āĻāĻāĻāĻŋ āϏāϰāϞ āĻĻā§āϞāĻā§āϰ āĻĻā§āϰā§āĻā§āϝ āĻĒāϰāĻŋāĻŦāϰā§āϤāύ āĻāϰ⧠āĻāĻŋāύā§āύ āĻāĻŋāύā§āύ l āĻāϰ āĻāύā§āϝ āĻĻā§āϞāĻā§āϰ āĻĻā§āϞāύāĻāĻžāϞ T āĻĒāϰāĻŋāĻŽāĻžāĻĒ āĻāϰāϞāĨ¤ āĻāĻŦāĻžāϰ āϏ⧠\(T^2(y-axis)\) āĻŦāύāĻžāĻŽ l(x-axis) āϞā§āĻāĻāĻŋāϤā§āϰ āĻāĻāĻā§ āĻĸāĻžāϞ S āĻŦā§āϰ āĻāϰāϞ⧠āĨ¤ g āĻāϰ āĻŽāĻžāύ āĻŽāϤ?
- \(4 \pi^{2} \mathrm{~S}\)
- \(4 \pi^{2} / \mathrm{S}\)
- \(2 \pi / \mathrm{S}\)
- \(2 \pi \mathrm{S}\)
Ans. \(4 \pi^{2} / \mathrm{S}\)
- āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻĻā§āĻāĻŋ āϧāĻžāϤāĻŦ āĻĒāĻžāϤā§āϰ āĻŽāϧā§āϝāĻāĻžāϰ āĻĻā§āϰāϤā§āĻŦ d āĻāĻŦāĻ āĻŦāĻŋāĻāĻŦ āĻĒāĻžāϰā§āĻĨāĻā§āϝ V āϝāĻĻāĻŋ Q āĻāϧāĻžāύā§āϰ āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§ āĻāĻžāϰā§āĻ āĻĒāĻžāϤ āĻĻā§āĻāĻŋāϰ āĻ āĻŋāĻ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻŦāĻŋāύā§āĻĻā§āϤ⧠āϰāĻžāĻāĻž āĻšāϝāĻŧ āϤāĻŦā§ āĻāĻžāϰā§āĻāĻāĻŋāϰ āĻāĻĒāϰ āĻā§āϰāĻŋāϝāĻŧāĻžāĻļā§āϞ āϏā§āĻĨāĻŋāϰ āϤāĻĄāĻŧāĻŋā§ āĻŦāϞā§āϰ āĻŽāĻžāύ āĻāϤ?
- 2VQ/d
- VQ/d
- VQ/2d
- dQ/V
Ans. VQ/d
- āĻāĻ āĻā§āĻāϰāĻž āĻāϰā§āĻāϝā§āĻā§āϤ 0°C āϤāĻžāĻĒāĻŽāĻžāϤā§āϰāĻžāϰ āĻāĻāĻāĻŋ āĻŦāϰāĻĢāĻāĻŖā§āĻĄ āĻŦāϰāĻĢ āĻĒāĻžāύāĻŋāϤ⧠āĻāĻžāϏāĻŽāĻžāύāĨ¤ āĻŦāϰāĻĢāĻāĻŖā§āĻĄāĻāĻŋ āĻāϞ⧠āĻā§āϞ⧠āĻĒāĻžāύāĻŋāϰ āϏā§āϤāϰā§āϰ āĻāĻā§āĻāϤāĻž-
- āĻŦā§āĻĻā§āϧāĻŋ āĻĒāĻžāĻŦā§
- āĻāĻŽā§ āϝāĻžāĻŦā§
- āϏāĻŽāĻžāύ āĻĨāĻžāĻāĻŦā§
- āĻāĻĻāĻŋ āĻ āĻŦāϏā§āĻĨāĻžāϝāĻŧ āĻĒāĻžāύāĻŋ āĻ āĻŦāϰāĻĢā§āϰ āĻ āύā§āĻĒāĻžāϤā§āϰ āĻāĻĒāϰ āύāĻŋāϰā§āĻāϰāĻļā§āϞ
Ans. āϏāĻŽāĻžāύ āĻĨāĻžāĻāĻŦā§
- āĻĒāĻžāύāĻŋāϰ āĻĒā§āϰāϤāĻŋāϏāϰāĻžāĻā§āĻ 1.3 āĻšāϞā§,āĻĒāĻžāύāĻŋāϤ⧠āĻāϞā§āϰ āĻŦā§āĻ āĻāϤ? āĻļā§āύā§āϝ āϏā§āĻĨāĻžāύ⧠āĻāϞā§āϰ āĻŦā§āĻ \(3 \times 10^{8} \mathrm{~ms}^{-1}\)
- \(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\)
- \(2.31 \times 10^{8} \mathrm{~m} / \mathrm{s}\)
- \(2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\)
- \(4.4 \times 10^{8} \mathrm{~m} / \mathrm{s}\)
Ans. \(2.31 \times 10^{8} \mathrm{~m} / \mathrm{s}\)
- āĻāĻāĻāĻŋ āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰ⧠āϰāĻžāĻāĻž āĻāĻāĻāĻŋ āĻāĻĻāϰā§āĻļ āĻā§āϝāĻžāϏā§āϰ āĻ
āĻŖā§āĻā§āϞā§āϰ āĻŦāϰā§āĻāĻŽā§āϞ-āĻāĻĄāĻŧ-āĻŦā§°ā§āĻāĻŦā§āĻ uāĨ¤ āĻā§āϝāĻžāϏ⧠āϤāĻžāĻĒ āĻĒā§āϰā§ā§āĻā§āϰ āĻĢāϞ⧠āĻāĻžāĻĒ 9 āĻā§āĻŖ āĻŦā§āĻĻā§āϧāĻŋ āĻĒā§āϞāĨ¤ āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰā§āϰ āĻāϝāĻŧāϤāύ āĻ
āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻĨāĻžāĻāϞ⧠āĻā§āϝāĻžāϏā§āϰ , āĻ
āĻŖā§āĻā§āϞā§āϰ āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻŦāϰā§āĻāĻŽā§āϞ-āĻāĻĄāĻŧ-āĻŦā§°ā§āĻāĻŦā§āĻ āĻāϤ?
- 9u
- 6u
- \(\sqrt{3} \mathrm{u} / 2\)
- 3u
Ans. 3u
- āĻŽāĻžāύāĻŦāĻĻā§āĻšā§āϰ āĻā§āϝāĻžāύā§āϏāĻžāϰ āĻāĻā§āϰāĻžāύā§āϤ āĻā§āώāĻā§ āϧā§āĻŦāĻāϏ āĻāϰāĻžāϰ āĻāύā§āϝ āύāĻŋāĻŽā§āύā§āϰ āĻā§āύ āϰāĻļā§āĻŽāĻŋ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰāĻž āĻšāϝāĻŧ?
- \(\alpha\)
- \(\beta\)
- \(\gamma\)
- X-ray
Ans. \(\gamma\)
āϰāϏāĻžā§āύ
-
āύāĻŋāĻŽā§āύā§āϰ āĻŦāĻŋāĻāĻŋāϰāĻŖāĻā§āϞā§āϰ āĻŽāϧā§āϝ⧠āĻā§āύāĻāĻŋāϰ āϤāϰāĻā§āĻāĻĻā§āϰā§āĻā§āϝ āϏāĻŦāĻā§āϝāĻŧā§ āĻāĻŽ?
- X-ray
- UV
- \(\gamma\) – ray
- IR
Ans. \(\gamma\) – ray
- āĻāĻāϰāĻŋāϝāĻŧāĻžāϏāĻžāϰ āϤā§āϰāĻŋāϤ⧠āĻĒā§āϰāĻžāĻā§āϤāĻŋāĻ āĻā§āϝāĻžāϏ āϝā§āĻāĻžāĻŦā§ āĻŦā§āϝāĻŦāĻšā§āϤ āĻšāϝāĻŧ?
- As a fuel
- For synthesis of \(NH_3\)
- As acoolant
- None of the above
Ans. For synthesis of \(NH_3\)
- āύāĻŋāĻŽā§āύā§āϰ āϝā§āĻāĻā§āϞā§āϰ āĻā§āύāĻāĻŋ āύāĻŋāĻāĻā§āϞāĻŋāĻāĻĢāĻžāĻāϞ?
- \(\mathrm{H}_{2} \mathrm{O}\)
- \(\mathrm{AlCl}_{3}\)
- \(\mathrm{NH}_{4}^{+}\)
- \(\mathrm{CH}_{3}{ }^{+}\)
Ans. \(\mathrm{H}_{2} \mathrm{O}\)
- Ar-CHO \(\overset{\mbox{Reagent}}{\longrightarrow}\) \(\overset{\mbox{H+/H2O}}{\longrightarrow}\) ArCH(OH)COOH āĻŦāĻŋāĻāĻžāϰāĻāĻāĻŋ-
- RMgX
- HCN
- \(CH_3Cl\)
- \(H_2CO_3\)
Ans. HCN
- āĻāĻāϏā§āĻāϞā§āĻāĻā§āϰāĻŋāĻ āĻĒāϝāĻŧā§āύā§āĻā§ āĻ
ā§āϝāĻžāĻŽāĻžāĻāύ⧠āĻāϏāĻŋāĻĄāϏāĻŽā§āĻš āĻā§āύāϰā§āĻĒā§ āĻ
āĻŦāϏā§āĻĨāĻžāύ āĻāϰā§?
Ans. C
-
- \(CH_3CH=CHCH_3\) āϝā§āĻāĻāĻŋāϰ āĻāϝāĻŧāĻāĻŋ āϏā§āĻā§āϰāĻŋāĻāϏāĻŽāĻžāĻŖā§ āϰāϝāĻŧā§āĻā§?
- 2
- 3
- 4
- None
Ans. 2
- āĻāĻĨāĻžāĻāϞ āĻ
ā§āϝāĻžāϏāĻŋāĻā§āĻāĻā§ āĻā§āώāĻžāϰā§āϝāĻŧ āĻāϰā§āĻĻā§āϰ-āĻŦāĻŋāĻļā§āϞā§āώāĻŖ āĻāϰāϞ⧠āĻā§āύ āĻā§āĻĒāĻžāĻĻāĻā§āϞ⧠āϤā§āϰāĻŋ āĻšāϝāĻŧ?
- \(\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\)
- \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH}\)
- \(\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{OH}\)
- \(\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\)
Ans. \(\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\)
- āĻā§āύ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϝāĻŧ āĻāύā§āĻā§āϰāĻĒāĻŋāϰ āĻŽāĻžāύ āĻŦāĻžāĻĄāĻŧā§?
- \(2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})\)
- \(2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})\)
- \(4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})\)
- \(\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(l)\)
Ans. \(2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})\)
- āĻāĻāĻāĻŋ s āĻ
āϰāĻŦāĻŋāĻāĻžāϞ āĻāĻŦāĻ āĻāĻāĻāĻŋ p āĻ
āϰāĻŦāĻŋāĻāĻžāϞā§āϰ āĻšāĻžāĻāĻŦā§āϰāĻŋāĻĄāĻžāĻāĻā§āĻļāύ āĻšāϞ⧠āĻāĻŽāϰāĻž āĻĒāĻžāĻ-
- Two mutually perpendicular orbitals
- Two orbitals at 180°
- Four orbitals directed tetrahedrally
- Three orbitals in a plane
Ans. Two orbitals at 180°
- āĻĨāĻžā§ā§āϏāĻžāϞāĻĢā§āĻ \(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\) āĻāϝāĻŧāύ⧠āϏāϰā§āĻŦāĻŽā§āĻ āϝā§āĻāύ āĻāϞā§āĻāĻā§āϰāύā§āϰ āϏāĻāĻā§āϝāĻž āĻāϤ?
- 28
- 30
- 32
- 34
Ans. 32
- 2p āĻ
āϰāĻŦāĻŋāĻāĻžāϞā§āϰ n, l āĻāĻŦāĻ m āĻāϰ āĻŽāĻžāύ āϝāĻĨāĻžāĻā§āϰāĻŽā§-
- 2,1,0
- 2,1,(-1,0,1)
- 2,2,(-2,-1,0,1,2)
- 1,1,0
Ans. 2,1,(-1,0,1)
- \(0.01 \mathrm{~mol} / \mathrm{L}\) āĻāύāĻŽāĻžāϤā§āϰāĻž āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻšāĻžāĻāĻĄā§āϰā§āύāĻŋā§āĻžāĻŽ āĻā§āύ \(\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)\) āĻĻā§āϰāĻŦāĻŖā§āϰ pOH āĻāϤ?
- 2
- 12
- 10
- 14
Ans. 12
- āύāĻŋāĻŽā§āύā§āϰ āύāĻŋāĻāĻā§āϞāĻŋāϝāĻŧāĻžāϰ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϝāĻŧ X-āĻāĻŖāĻžāĻāĻŋ āĻāĻŋ?
\({ }_{4}^{9} \mathrm{Be}+{ }_{2}^{4} \mathbf{X} \rightarrow { }_{6}^{12} \mathrm{C}+{ }_{0}^{1} \mathrm{n}\)- \(\alpha\) -particle
- \(\beta\) -particle
- \(\gamma\) -particle
- Neutron
Ans. \(\alpha\) -particle
- āϤāĻžāĻĒāĻŽāĻžāϤā§āϰāĻž āĻŦā§āĻĻā§āϧāĻŋ āĻāϰāϞ⧠āύāĻŋāĻŽā§āύ⧠āĻāϞā§āϞā§āĻāĻŋāϤ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϝāĻŧ āĻ
ā§āϝāĻžāĻŽā§āύāĻŋāϝāĻŧāĻžāϰ āĻā§āĻĒāĻžāĻĻāύ āĻāĻŋāĻāĻžāĻŦā§ āĻĒā§āϰāĻāĻžāĻŦāĻŋāϤ āĻšāĻŦā§?
\(\mathbf{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta \mathrm{H}=-92 \mathrm{~kJ}\)
(āĻŦāĻž 46.1 kJ/mol)- Increase
- Decrease
- Remain same
- None of these
Ans. Decrease
- āĻŽā§āϝāĻžāĻā§āϏāĻāϝāĻŧā§āϞā§āϰ āĻ
āĻŖā§āϰ āĻāϤāĻŋāϰ āĻŦāĻŋāϤāϰāĻŖā§āϰ āĻā§āώā§āϤā§āϰ⧠āĻā§āύ āĻāĻā§āϤāĻŋāĻāĻŋ āϏāĻ āĻŋāĻ āύāϝāĻŧ?
- Most probable speed is the speed of all of the molecules
- Most probable speed decreases as temperature increases
- Larger numbers of molecules move at a greater speed at high temperature
- Distribution curve tells the number of molecules moving at a certain speed
Ans. Most probable speed decreases as temperature increases
- āĻšāĻžāĻāĻĄā§āϰā§āĻā§āύ āĻŦā§āϰā§āĻŽāĻžāĻāĻĄā§āϰ āϏāĻžāĻĨā§ āĻĒā§āϰā§āĻĒāĻŋāύā§āϰ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϝāĻŧ āĻĒā§āϰāϧāĻžāύ āĻā§āĻĒāĻžāĻĻ āĻšāϞā§-
- 1-bromopropane
- 2-bromopropane
- 1,2-dibromopropane
- 2-bromopropene
Ans. 2-bromopropane
- āύāĻŋāĻŽā§āύā§āϰ āϏāĻŽāϤāĻžāĻā§āϤ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϰ āϏāĻšāĻāĻā§āϞā§āϰ āĻŽāĻžāύ āĻšāϞā§-
\(\mathbf{a} \mathbf{N H}_{3}+\mathbf{b} \mathbf{O}_{2} \rightarrow \mathbf{c} \mathbf{N O}+\mathbf{d} \mathbf{H}_{2} \mathbf{O}\)- \(a=2, b=3, c=2\), and \(d=3\)
- \(a=4, b=7, c=4\), and \(d=4\)
- \(a=4, b=5, c=4\), and \(d=6\)
- \(\mathrm{a}=6, \mathrm{~b}=7, \mathrm{c}=6\), and \(\mathrm{d}=9\)
Ans. \(a=4, b=5, c=4\), and \(d=6\)
- āĻŦā§āϰāĻŋāϝāĻŧāĻžāĻŽ āĻā§āϞā§āϰāĻžāĻāĻĄā§āϰ āĻāϞā§āϝāĻŧ āĻĻā§āϰāĻŦāĻŖ āĻĒāĻžāϤāϞāĻž āĻāϞā§āϝāĻŧ āϏāĻžāϞāĻĢāĻŋāĻāϰāĻŋāĻ āĻāϏāĻŋāĻĄ āĻĻā§āϰāĻŦāĻŖā§ āϝā§āĻ āĻāϰāϞ⧠āϏāĻžāĻĻāĻž āĻ
āϧāĻāĻā§āώā§āĻĒ āϤā§āϰāĻŋ āĻšāϝāĻŧāĨ¤ āĻ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϰ āĻāϝāĻŧāύāĻŋāĻ āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ (āĻ
āĻŦāϏā§āĻĨāĻžāϰ āϏāĻāĻā§āϤ āϏāĻš) āĻšāϞā§-
- \(\mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq})\)
- \(\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})\)
- \(\mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{SO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{Ba}\left(\mathrm{SO}_{4}\right)_{2}(\mathrm{~s})\)
- \(\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})\)
Ans. \(\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})\)
- āĻā§āύ āϏāĻŋāϞāĻāĻžāϰ āĻšā§āϝāĻžāϞāĻžāĻāĻĄāĻāĻŋ āĻā§āϰā§āĻŽ-āĻŦāϰā§āĻŖā§āϰ āĻāĻ āĻŋāύ āĻĒāĻĻāĻžāϰā§āĻĨ, āϏā§āϰā§āϝāĻžāϞā§āĻā§ āĻāĻžāϞāĻā§ āĻšāϝāĻŧ āĻāĻŦāĻ āĻāύ āĻ
ā§āϝāĻžāĻŽā§āύāĻŋāϝāĻŧāĻž āĻĻā§āϰāĻŦāĻŖā§ āĻĻā§āϰāĻŦā§āĻā§āϤ āĻšāϝāĻŧ?
- AgF
- AgCl
- AgBr
- AgI
Ans. AgBr
- A + 2B â D āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϰ āĻā§āώā§āϤā§āϰ⧠āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϰ āĻšāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ āĻšāϞā§, \(rate = k[A][B]^2\)āĨ¤ āϝāĻĻāĻŋ āĻāĻāϝāĻŧ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻā§āϰ āĻāύāĻŽāĻžāϤā§āϰāĻž āĻĻā§āĻŦāĻŋāĻā§āĻŖ āĻāϰāĻž āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧠āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϰ āĻšāĻžāϰ āĻŦā§āĻĻā§āϧāĻŋ āĻĒāĻžāĻŦā§-
- 2 times
- 4 times
- 6 times
- 8 times
Ans. 8 times
-
\({ }_{6}^{14} \mathrm{C}\) āĻ \({ }_8^{16} \mathrm{O}\) āĻĒāϰāϏā§āĻĒāϰā§āϰ-
- Isomer
- Isotone
- Isobar
- Isotope
Ans. Isotone
- āĻā§āύ āϝā§āĻāĻāĻŋ āĻāϞāĻŋāĻĢā§āϝāĻžāĻāĻŋāĻ āĻ āĻ
ā§āϝāĻžāϰā§āĻŽā§āĻāĻŋāĻ āĻāĻāϝāĻŧ āϧāϰā§āĻŽ āĻĒāĻĻāϰā§āĻļāύ āĻāϰā§?
- Benzene
- Cyclohexane
- Toluene
- Chlorobenzene
Ans. Toluene
- āĻā§āύāĻāĻŋ āĻĢāϰāĻŽāĻžāϞāĻŋāύ?
- 96% ethanol
- 6-10% ethanoic acid
- 30% \(H_2O_2\)
- 40% aqueous solution of formaldehyde
Ans. 40% aqueous solution of formaldehyde
- āϝ⧠āĻļāϰā§āĻāϰāĻž āĻĢā§āĻšāϞāĻŋāĻ āĻĻā§āϰāĻŦāĻŖ āĻ āĻāϞā§āύ āĻŦāĻŋāĻāĻžāϰāĻāĻā§ āĻŦāĻŋāĻāĻžāϰāĻŋāϤ āĻāϰāϤ⧠āĻĒāĻžāϰ⧠āύāĻž-
- Sucrose
- Glucose
- Fructose
- Maltose
Ans. Sucrose
- \(CuSO_4\) āĻĻā§āϰāĻŦāĻŖā§ 1.0F āĻŦāĻŋāĻĻā§āϝā§ā§ āĻāĻžāϰā§āĻ āĻĒā§āϰāĻŦāĻžāĻšāĻŋāϤ āĻāϰāϞ⧠āĻāϤ āĻŽā§āϞ āĻāĻĒāĻžāϰ āĻāĻŽāĻž āĻšāĻŦā§?
- 0.5 mole at cathode
- 0.5 mole at anode
- 2 mole at anode
- 2 mole at cathode
Ans. 0.5 mole at cathode
-
āĻā§āύ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāĻāĻŋ āĻāĻžāϰāĻŖ-āĻŦāĻŋāĻāĻžāϰāĻŖ āύāϝāĻŧ?
- \(2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}\)
- \(\mathrm{CO}_{2}+\mathrm{C} \rightarrow 2 \mathrm{CO}\)
- \(\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}\)
- \(\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}\)
Ans. \(\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}\)
- āĻā§āύ āϞā§āĻāĻāĻŋāϤā§āϰāĻāĻŋ āϏā§āĻĨāĻŋāϰ āĻāĻžāĻĒā§ āĻāĻžāϰā§āϞāϏā§āϰ āϏā§āϤā§āϰā§āϰ āϏāĻžāĻĨā§ āϏāĻāĻāϤāĻŋāĻĒā§āϰā§āĻŖ?
Ans. A
-
- āύāĻŋāĻŽā§āύā§āϰ 2% (W/V) āĻāϞā§āϝāĻŧ āĻĻā§āϰāĻŦāĻŖāĻā§āϞā§āϰ āĻā§āύāĻāĻŋāϰ āϏā§āĻĢā§āĻāύāĻžāĻāĻ āϏāĻŦāĻā§āϝāĻŧā§ āĻŦā§āĻļāĻŋ?
- NaCl
- KCl
- RbCl
- NaBr
Ans. RbCl
- āύāĻŋāĻŽā§āύā§āϰ āĻā§āύ āĻāϏāĻŋāĻĄāĻāĻŋāϰ \(\mathbf{p K}_{\mathbf{a}}\) āĻāϰ āĻŽāĻžāύ āϏāĻŦāĻā§āϝāĻŧā§ āĻŦā§āĻļāĻŋ?
- \(CH_3COOH\)
- \(Cl_2CHCOOH\)
- \(ClCH_2COOH\)
- \(C_6H_5COOH\)
Ans. \(CH_3COOH\)
- āĻāĻāĻāĻŋ āĻ
āύā§āĻĻā§āĻŦāĻžāϝāĻŧā§ āĻĻā§āϰāĻŦā§āϰ āϞāĻā§ āĻĻā§āϰāĻŦāĻŖā§āϰ āĻŦāĻžāώā§āĻĒāĻāĻžāĻĒ āϝāĻžāϰ āϏāĻžāĻĨā§ āϏāϰāĻžāϏāϰāĻŋ āϏāĻŽāĻžāύā§āĻĒāĻžāϤāĻŋāĻ āϤāĻž āĻšāϞā§-
- Molality of the solvent
- Osmotic pressure of the solute
- Molarity of the solvent
- Mole fraction of the solvent
Ans. Mole fraction of the solvent
āĻāĻŖāĻŋāϤ
- \(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\ldots \ldots \ldots . . n\) āϤāĻŽ āĻĒāĻĻ āĻĒāϰā§āϝāύā§āϤ = ?
- \(\frac{n+1}{3(n+2)}\)
- \(\frac{n}{3(n+3)}\)
- \(\frac{n}{2(n+3)}\)
- \(\frac{n+2}{3(n+3)}\)
Ans. \(\frac{n}{3(n+3)}\)
- \(|\mathbf{x}|<1\) āĻāϰ āĻļāϰā§āϤ⧠\(\frac{1+2 x}{1-x}\) āĻāϰ āĻŦāĻŋāϏā§āϤā§āϤāĻŋāϤ⧠\(x^9\) āĻāϰ āϏāĻšāĻ-
- 1
- 5
- 2
- 3
Ans. 3
- x āĻāϰ āĻŦāĻžāϏā§āϤāĻŦ āĻŽāĻžāύā§āϰ āĻāύā§āϝ \(|4x – 3|>1\) āĻ
āϏāĻŽāϤāĻžāϰ āϏāĻŽāĻžāϧāĻžāύ-
- \(\left(-\infty, \frac{1}{2}\right)\)
- \((1, \infty)\)
- \(\left(-\infty, \frac{1}{2}\right) \cup(1, \infty)\)
- \(\left(-\infty, \frac{1}{2}\right] \cup[1, \infty)\)
Ans. \(\left(-\infty, \frac{1}{2}\right) \cup(1, \infty)\)
-
\(\left|\begin{array}{lll}\alpha & \alpha & x \\ \beta & \beta & \beta \\ \theta & x & \theta\end{array}\right|=0, x=?\)
- \(\alpha, \beta, \theta\)
- \(\alpha, \theta\)
- \(\beta, \theta\)
- \(\alpha, \beta\)
Ans. \(\alpha, \theta\)
- \(3 x^{2}-k x+4=0\) āϏāĻŽā§āĻāϰāĻŖāĻāĻŋāϰ āĻāĻāĻāĻŋ āĻŽā§āϞ āĻ
āĻĒāϰāĻāĻŋāϰ 3 āĻā§āĻŖ āĻšāϞā§, k āĻāϰ āĻŽāĻžāύ-
- 8
- -8
- \(\sqrt{8}\)
- \(\pm 8\)
Ans. \(\pm 8\)
- COURAGE āĻļāĻŦā§āĻĻāĻāĻŋāϰ āĻŦāϰā§āĻŖāĻā§āϞ⧠āύāĻŋāϝāĻŧā§ āĻāϤāĻā§āϞ⧠āĻŦāĻŋāύā§āϝāĻžāϏ āϏāĻāĻā§āϝāĻž āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĻž āϝāĻžāϝāĻŧ āϝā§āύ āĻĒā§āϰāϤā§āϝā§āĻ āĻŦāĻŋāύā§āϝāĻžāϏā§āϰ āĻĒā§āϰāĻĨāĻŽā§ āĻāĻāĻāĻŋ āϏā§āĻŦāϰāĻŦāϰā§āĻŖ āĻĨāĻžāĻā§-
- 720
- 2880
- 180
- 5040
Ans. 2880
- 1 āĻĨā§āĻā§ 21 āĻĒāϰā§āϝāύā§āϤ āϏāĻāĻā§āϝāĻž āĻšāϤ⧠āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋāĻā§ āĻĻā§āĻŦāĻāϝāĻŧāύā§āϰ āĻŽāĻžāϧā§āϝāĻŽā§ āύāĻŋāϞ⧠āϏā§āĻ āϏāĻāĻā§āϝāĻžāĻāĻŋ 3 āĻŦāĻž 7 āĻāϰ āĻā§āĻŖāĻŋāϤāĻ āĻšāĻŦāĻžāϰ āϏāĻŽā§āĻāĻžāĻŦāύāĻž āĻāϤ?
- \(\frac{8}{21}\)
- \(\frac{3}{7}\)
- \(\frac{10}{}21\)
- \(\frac{11}{21}\)
Ans. \(\frac{3}{7}\)
-
āϝāĻĻāĻŋ \(a^{*} b=\frac{a b}{a+b}\) āĻĻā§āĻŦāĻžāϰāĻž a āĻāĻŦāĻ b āĻŦāĻžāϏā§āϤāĻŦ āϏāĻāĻā§āϝāĻžāϰ āĻŽāϧā§āϝ⧠āϏāĻŽā§āĻĒāϰā§āĻ * āĻĻā§āĻŦāĻžāϰāĻž āϏāĻāĻā§āĻāĻžāϝāĻŧāĻŋāϤ āĻāϰāĻž āĻšāϝāĻŧ, āϤāĻŦā§ 10*2 = ?
- 5/3
- 5/2
- 5
- 2
Ans. 5/3
- \(\frac{\mathbf{i}-\mathbf{i}^{-1}}{\mathbf{i}+2 i^{-1}}\) āĻāϰ āĻŽāĻžāύ āĻāĻŦāĻ āύāϤāĻŋ āĻšāĻŦā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§-
- 0, 0
- \(-2 \mathrm{i}, \frac{-\pi}{2}\)
- \(2 \mathrm{i}, \frac{\pi}{2}\)
- \(-2, \pi\)
Ans. \(-2, \pi\)
- \(A=\left(\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right)\) āĻāĻŦāĻ \(B=\left(\begin{array}{ll}2 & 2 \\ 3 & 3\end{array}\right)\), AB = ?
- \(\left(\begin{array}{ll}-2 & 2 \\ -2 & 2\end{array}\right)\)
- \(\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\)
- \(\left(\begin{array}{ll}0 & 0 \\ 3 & 0\end{array}\right)\)
- \(\left(\begin{array}{cc}-2 & -2 \\ 2 & 2\end{array}\right)\)
Ans. \(\left(\begin{array}{cc}-2 & -2 \\ 2 & 2\end{array}\right)\)
- y = – 5x +9 āϰā§āĻāĻžāϰ āϏāĻžāĻĨā§ āϞāĻŽā§āĻŦ āϰā§āĻāĻžāϰ āύāϤāĻŋ-
- 5
- -5
- \(\frac{1}{5}\)
- \(-\frac{1}{5}\)
Ans. \(\frac{1}{5}\)
- āύāĻŋāĻŽā§āύā§āϰ āĻā§āύ āĻŦā§āϤā§āϤāĻāĻŋ x-āĻ
āĻā§āώāĻā§ āϏā§āĻĒāϰā§āĻļ āĻāϰā§-
- \(x^{2}+y^{2}-2 x+6 y+4=0\)
- \(x^{2}+y^{2}-4 x+6 y+5=0\)
- \(x^{2}+y^{2}-2 x+6 y+1=0\)
- \(2 x^{2}+2 y^{2}-2 x+6 y+3=0\)
Ans. \(x^{2}+y^{2}-2 x+6 y+1=0\)
- (1,4) āĻāĻŦāĻ (9, 12) āĻŦāĻŋāύā§āĻĻā§āĻĻā§āĻŦāϝāĻŧā§āϰ āϏāĻāϝā§āĻāĻ āϰā§āĻāĻž āϝ⧠āĻŦāĻŋāύā§āĻĻā§āϤ⧠3:5 āĻ
āύā§āĻĒāĻžāϤ⧠āĻ
āύā§āϤāϰā§āĻŦāĻŋāĻāĻā§āϤ āĻšāϝāĻŧ, āϤāĻžāϰ āϏā§āĻĨāĻžāύāĻžāĻā§āĻ-
- (7,4)
- (4,7)
- (5,8)
- (8,5)
Ans. (4,7)
- P(6, ā§Ē), Q(4, 0) āĻāĻŦāĻ R(0, 0) āĻļā§āϰā§āώāĻŦāĻŋāύā§āĻĻā§ āĻŦāĻŋāĻļāĻŋāώā§āĻ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ-
- 32 Sq. units
- 16 Sq. units
- 12 Sq. units
- 24 Sq. units
Ans. 16 Sq. units
- a āĻāϰ āĻŽāĻžāύ āĻāϤ āĻšāϞā§, \(\frac{1}{2} \hat{i}+\frac{1}{3} \hat{j}+a \hat{k}\) āĻā§āĻā§āĻāϰāĻāĻŋ āĻāĻāĻāĻŋ āĻāĻāĻ āĻā§āĻā§āĻāϰ āĻšāĻŦā§-
- \(\pm \frac{2}{3}\)
- \(\pm \frac{\sqrt{15}}{6}\)
- \(\pm \frac{7}{6}\)
- \(\pm \frac{\sqrt{23}}{6}\)
Ans. \(\pm \frac{\sqrt{23}}{6}\)
- ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BC, CA, āĻāĻŦāĻ AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĻā§āϞ⧠āϝāĻĨāĻžāĻā§āϰāĻŽā§ D, E āĻāĻŦāĻ F āĻšāϞā§-
- \(\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}\)
- \(\overrightarrow{\mathrm{DA}}=\overrightarrow{\mathrm{DF}}+\overrightarrow{\mathrm{DE}}\)
- \(\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}\)
- \(\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{BE}}+\overrightarrow{\mathrm{CF}}\)
Ans. \(\overrightarrow{\mathrm{DA}}=\overrightarrow{\mathrm{DF}}+\overrightarrow{\mathrm{DE}}\)
- sin65° + cos65° āĻāϰ āĻŽāĻžāύ-
- 2cos20°
- \(\sqrt{2} \cos 20^{\circ}\)
- \(\sqrt{2} \sin 20^{\circ}\)
- 2 sin20°
Ans. \(\sqrt{2} \cos 20^{\circ}\)
- 3x + 5y = 2, 2x + 3y = 0, ax + by +1 =0 āϏāĻŽāĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ āĻšāϞā§, a āĻāĻŦāĻ b āĻāϰ āϏāĻŽā§āĻĒāϰā§āĻ-
- 4a – 6b = 1
- 4a – 6b = 2
- 6a – 4b = 1
- 6a – 4b = 2
Ans. 6a – 4b = 1
- \(5 x^{2}+15 x-10 y-4=0\) āĻĒāϰāĻžāĻŦā§āϤā§āϤā§āϰ āύāĻŋā§āĻžāĻŽāĻā§āϰ āϏāĻŽā§āĻāϰāĻŖ-
- \(40x+81=0\)
- \(2x+3=0\)
- \(40y+81=0\)
- \(40y+41=0\)
Ans. \(40y+81=0\)
- ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ cosA + cosC = sinB āĻšāϞā§, \(\angle \mathrm{C}\) āĻāϰ āĻŽāĻžāύ-
- \(\frac{\pi}{4}\)
- \(\frac{\pi}{3}\)
- \(\frac{\pi}{2}\)
- \(\frac{\pi}{6}\)
Ans. \(\frac{\pi}{2}\)
-
\(\sin ^{-1} \frac{4}{5}+\cos ^{-1} \frac{2}{\sqrt{5}}\) āϏāĻŽāĻžāύ-
- \(\tan ^{-1} \frac{2}{11}\)
- \(\sin ^{-1} \frac{11}{2}\)
- \(\tan ^{-1} \frac{11}{2}\)
- \(\cos ^{-1} \frac{11}{2}\)
Ans. \(\tan ^{-1} \frac{11}{2}\)
- \(\operatorname{cosec} \theta+\cot \theta=\sqrt{3},(0<\theta<2 \pi)\) āĻšāϞā§,\(\theta\) āĻāϰ āĻŽāĻžāύ-
- \(\frac{\pi}{6}\)
- \(\frac{\pi}{4}\)
- \(\frac{\pi}{3}\)
- \(\frac{2\pi}{3}\)
Ans. \(\frac{\pi}{3}\)
- \(f(x)=\frac{1}{\sqrt{4-x^{2}}}\) āĻŦāĻžāϏā§āϤāĻŦ āĻĢāĻžāĻāĻļāύāĻāĻŋāϰ āĻĄā§āĻŽā§āύ āĻāĻŦāĻ āϰā§āĻā§āĻ-
- \(x<-2, y>\frac{1}{2}\)
- \(-2< x<2, y \geq \frac{1}{2}\)
- \(-2 \leq x \leq 2, y<\frac{1}{2}\)
- \(-x<-2 \& x>,-2< y<2\)
Ans. \(-2< x<2, y \geq \frac{1}{2}\)
- x = 0 āĻŦāĻŋāύā§āĻĻā§āϤ⧠\(\mathbf{y}=\mathbf{x}+\mathbf{e}^{x}\) āĻāϰ āϞā§āĻāĻāĻŋāϤā§āϰ⧠āϏā§āĻĒāϰā§āĻļāĻā§āϰ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§-
- \(y=x\)
- \(y=x+1\)
- \(y=2x+1\)
- \(y=2x\)
Ans. \(y=2x+1\)
- \(\int_{0}^{1} \frac{\ln (x+1)}{x+1} d x=?\)
- \(\frac{1}{2}(\ln 2)^{2}\)
- \(\frac{1}{2} \ln 2\)
- \(\infty \)
- 0
Ans. \(\frac{1}{2}(\ln 2)^{2}\)
-
\(y=x\) āĻāĻŦāĻ \(y=x^2\) āĻĻā§āĻŦāĻžāϰāĻž āĻāĻŦāĻĻā§āϧ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ (āĻŦāϰā§āĻ āĻāĻāĻā§)-
- \(\frac {5}{6}\)
- \(\frac {1}{6}\)
- \(-\frac {1}{6}\)
- \(\frac {1}{3}\)
Ans. \(\frac {1}{6}\)
- 3p āĻāĻŦāĻ 2p āĻŽāĻžāύā§āϰ āĻŦāϞ āĻĻā§āĻāĻāĻŋāϰ āϞāĻŦā§āϧāĻŋāϰ āĻŽāĻžāύ R. āϝāĻĻāĻŋ āĻĒā§āϰāĻĨāĻŽ āĻŦāϞā§āϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ āĻĻā§āĻŦāĻŋāĻā§āĻŖ āĻāϰāĻž āĻšāϝāĻŧ, āϤāĻŦā§ āϞāĻŦā§āϧāĻŋāϰ āĻŽāĻžāύāĻ āĻĻā§āĻŦāĻŋāĻā§āĻŖ āĻšāϝāĻŧāĨ¤ āĻŦāϞāĻĻā§āĻŦāϝāĻŧā§āϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻā§āĻŖ āĻšāĻŦā§
- 60°
- 90°
- 120°
- 150°
Ans. 120°
-
\(\underset {x \rightarrow 0} {\overset { } {\mathrm lim} } \frac{x^{2}+6 x}{2 x^{2}+5}=?\)
- 0
- \(\frac {3}{2} \)
- \(\frac {1}{2} \)
- 1
Ans. \(\frac {1}{2} \)
- \(\int \frac{\mathrm{e}^{x}(1+x)}{\cos ^{2}\left(x e^{x}\right)} d x=?\)
- \(x e^{x}+c\)
- \(\tan \left(x e^{x}\right)+c\)
- \(\cot \left(x e^{x}\right)+c\)
- \(\cos \left(x e^{x}\right)+c\)
Ans. \(\tan \left(x e^{x}\right)+c\)
- \(\mathrm{e}^{\mathrm{xy}+1}=5\) āĻšāϞā§, \(\frac{\mathrm{d} \mathbf{y}}{\mathrm{d} \mathrm{x}}=?\)
- \(\frac{\ln 5}{x y}\)
- \(\frac{\ln 5}{-x^{2}}\)
- \(-\frac{y}{x}\)
- \(\frac{\ln 5}{\mathrm{y}}\)
Ans. \(-\frac{y}{x}\)
āĻā§āĻŦāĻŦāĻŋāĻā§āĻāĻžāύ
-
āύāĻŋāĻā§āϰ āĻā§āύāĻāĻŋāϰ āĻĻā§āĻšā§ āύāĻĄāĻŋāĻāϞ āĻāĻā§?
- Navicula
- Spirogyra
- Clostridium
- Sargassum
Ans. Navicula
- āĻŽāĻžāϰā§āĻāĻŋāύāĻžāϞ (āĻāĻāĻĒā§āϰāĻžāύā§āϤā§āϝāĻŧ) āĻ
āĻŽāϰāĻžāĻŦāĻŋāύā§āϝāĻžāϏāϝā§āĻā§āϤ āĻā§āϤā§āϰ āĻšāϞā§-
- Fabaceae
- Brassicaceae
- Malvaceae
- Solanaceae
Ans. Fabaceae
- āĻĒā§āϰā§āĻāĻŋāύ āϏāĻāĻļā§āϞā§āώāĻŖā§āϰ āĻāύā§āϝ āύāĻŋāĻā§āϰ āĻā§āύāĻāĻŋ āĻĒā§āϰāϝā§āĻā§āϝ?
- Ribosome + mRNA + tRNA
- Mitochondrion + Cristae + ETS
- Chloroplast + Thylakoid + Granum
- Lysosome + Enzyme + Granule
Ans. Ribosome + mRNA + tRNA
- āĻāϞā§āĻāĻā§āϰāύ āĻā§āϰāĻžāύā§āϏāĻĒā§āϰā§āĻ āϏāĻŋāϏā§āĻā§āĻŽā§ āύāĻŋāĻā§āϰ āĻā§āύāĻāĻŋ āĻĨā§āĻā§ āĻ
āĻā§āϏāĻŋāĻā§āύ āĻāϞā§āĻāĻā§āϰāύ āĻā§āϰāĻšāĻŖ āĻāϰā§?
- Cyto. a3
- Cyto. a
- Cyto. c
- Cyto. b
Ans. Cyto. a3
- āĻĒāĻŋāĻĒāĻžāĻā§āϤāĻŋāϰ āĻŦāĻžāϝāĻŧā§āϰāύā§āϧā§āϰ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧ-
- Riccia
- Marchantia
- Pteris
- Selaginella
Ans. Marchantia
- āĻ
ā§āϝāĻžāύā§āĻāĻŋāĻŦāĻžā§ā§āĻāĻŋāĻ āĻā§āĻā§āϰāĻžāϏāĻžāĻāĻā§āϞāĻŋāύ āĻāϰ āĻā§āϏ-
- Streptomyces venezuelae
- Streptomyces aureofaciens
- Bacillus subtilis
- Cephalosporium acremonium
Ans. Streptomyces aureofaciens
- āĻĒā§āϞāĻžāĻāĻŽāĻŋāĻĄ āĻāĻŦāĻŋāώā§āĻāĻžāϰ āĻāϰā§āύ āĻā§?
- Altman
- Porter
- Kolliker
- Laderberg
Ans. Laderberg
- āĻļāĻŋāĻŽ āĻāĻĻā§āĻāĻŋāĻĻā§ āĻāĻŋ āϧāϰāύā§āϰ āĻĄāĻŋāĻŽā§āĻŦāĻ āĻĨāĻžāĻā§?
- āĻāϰā§āϧā§āĻŦāĻŽā§āĻā§
- āĻĒāĻžāϰā§āĻļā§āĻŦāĻŽā§āĻā§
- āĻ āϰā§āϧā§āĻžāĻŽā§āĻā§
- āĻŦāĻā§āϰāĻŽā§āĻā§
Ans. āĻ āϰā§āϧā§āĻžāĻŽā§āĻā§
- āĻāϏā§āĻā§ āĻā§āύ āϧāϰāύā§āϰ āĻāύāĻāĻžāĻāĻŽ āĻāĻā§?
- Amylase
- Lipase
- Zymase
- Cellulase
Ans. Zymase
-
āĻĒāĻžāĻā§āϰ āĻāĻāĻļ āĻā§āύ āĻāĻžāϤā§āϝāĻŧ āĻāĻŋāϏā§āϝā§?
- Apical meristem
- Secondary xylem tissue
- Primary xylem tissue
- Secondary phloem tissue
Ans. Secondary phloem tissue
- āύāĻŋāĻā§āϰ āĻā§āύ āĻāĻāĻŦā§āĻāĻĒāϤā§āϰ⧠āĻāĻĻā§āĻāĻŋāĻĻā§ āĻā§āĻŖāĻŦā§āĻĻā§āϧāĻŋ āĻāĻā§?
- Dracaena
- Maize
- Oryza sativa
- Orchid
Ans. Dracaena
- āĻ
ā§āϝāĻžāĻā§āϰā§āϏā§āύā§āĻā§āϰāĻŋāĻ āĻā§āϰā§āĻŽā§āϏā§āĻŽ āĻāύāĻžāĻĢā§āĻ āĻĒāϰā§āϝāĻžāϝāĻŧā§ āĻĻā§āĻāϤ⧠āĻā§āĻŽāύ?
- J-shaped
- V-shaped
- L-shaped
- I-shaped
Ans. J-shaped
- āύāĻŋāĻā§āϰ āĻā§āύāĻāĻŋ āϏā§āĻŽā§āϤāĻŋāĻļāĻā§āϤāĻŋ āĻŦāϰā§āϧāĻ āĻšāĻŋāϏā§āĻŦā§ āĻŦā§āϝāĻŦāĻšā§āϤ āĻšāϝāĻŧ?
- Boerhavia repens
- Bacopa monnieri
- Centella asiatica
- Rauvolfia serpentina
Ans. Bacopa monnieri
- āύāĻŋāĻā§āϰ āĻā§āύāĻāĻŋ āϏā§āύā§āĻĻāϰāĻŦāύā§āϰ āĻāĻĻā§āĻāĻŋāĻĻ?
- Phoenix sylvestris
- Cedrus deodara
- Ceriops decandra
- Azadirachta indica
Ans. Ceriops decandra
- āύāĻŋāĻā§āϰ āĻā§āύ āϏāĻĒā§āώā§āĻĒāĻ āĻāĻĻā§āĻāĻŋāĻĻāĻāĻŋāϤ⧠āĻāϰā§āĻāĻŋāĻā§āύāĻŋāϝāĻŧāĻžāĻŽ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧ?
- Artocarpus
- Hibiscus
- Cycas
- Ficus
Ans. Cycas
- āĻā§āĻŦāĻŦāĻŋāĻā§āĻāĻžāύ⧠āϰāĻŦāĻžāϰā§āĻ āĻšā§āĻ āĻā§āύ āĻŦāĻŋāĻā§āϝāĻžāϤ?
- āĻĒā§āϰāĻžāĻŖāĻŋāĻŦāĻŋāĻĻā§āϝāĻžāϰ āĻāύāĻ
- āĻāĻĻā§āĻāĻŋāĻĻ āĻ āĻĒā§āϰāĻžāĻŖā§āϰ āĻļā§āϰā§āĻŖāĻŋāĻŦāĻŋāύā§āϝāĻžāϏā§āϰ āĻĒā§āϰāĻŦāϰā§āϤāĻ
- āĻā§āώ āĻŽāϤāĻŦāĻžāĻĻā§āϰ āĻĒā§āϰāĻŦāϰā§āϤāĻ
- ‘Cell’ āĻļāĻŦā§āĻĻā§āϰ āĻĒā§āϰāĻŦāϰā§āϤāĻ
Ans. ‘Cell’ āĻļāĻŦā§āĻĻā§āϰ āĻĒā§āϰāĻŦāϰā§āϤāĻ
- āύāĻŋāĻāĻā§āϞāĻŋāĻāϏāĻžāĻāĻĄā§ āĻā§āύāĻāĻŋ āĻ
āύā§āĻĒāϏā§āĻĨāĻŋāϤ?
- āĻĄāĻŋ-āĻ āĻā§āϏāĻŋāϰāĻžāĻāĻŦā§āĻ āϏā§āĻāĻžāϰ
- āϏāĻžāĻāĻā§āϏāĻŋāύ
- āĻ ā§āϝāĻžāĻĄāĻŋāύāĻŋāύ
- āĻ āĻā§āĻŦ āĻĢāϏāĻĢā§āĻ
Ans. āĻ āĻā§āĻŦ āĻĢāϏāĻĢā§āĻ
- āĻĒā§āϰāĻāĻ āĻ
ā§āϝāĻžāĻĒāĻŋāϏā§āĻā§āϝāĻžāϏāĻŋāϏ āĻāϰ āĻ
āύā§āĻĒāĻžāϤ āĻā§āύāĻāĻŋ?
- 9:7
- 9:3:3:1
- 13:3
- 2:1
Ans. 13:3
- āύāĻŋāĻā§āϰ āĻā§āύāĻāĻŋ āĻĒā§āϰāĻāĻžāϤāĻŋāϰ āύāĻžāĻŽāĻāϰāĻŖā§āϰ āϏāĻžāĻĨā§ āϏāĻŽā§āĻĒāϰā§āĻāĻŋāϤ?
- ICZM
- ICZN
- British Museum
- United Nations
Ans. ICZN
- āĻā§āύāĻāĻŋ āϏāĻ āĻŋāĻāĻāĻžāĻŦā§ āϞā§āĻāĻž āϰā§āĻ āĻŽāĻžāĻā§āϰ āĻŦā§āĻā§āĻāĻžāύāĻŋāĻ āύāĻžāĻŽ?
- Labeo rohita
- Labeo rohita
- Labeo Rohita
- Labeo rohita
Ans. Labeo rohita
- āύāĻŋāĻā§āϰ āĻā§āύāĻāĻŋ Hydra āϤ⧠āύāĻŋāĻĄā§āĻŦā§āϞāĻžāϏā§āĻ āĻŦāĻšāύ āĻāϰ⧠āύāĻž?
- āĻšāĻžāĻāĻĒā§āϏā§āĻāĻŽ
- āĻāϰā§āώāĻŋāĻāĻž
- āĻāĻĒāĻŋāĻĄāĻžāϰā§āĻŽāĻŋāϏ
- āĻĒāĻžāĻĻ āĻāĻžāĻāϤāĻŋ
Ans. āĻĒāĻžāĻĻ āĻāĻžāĻāϤāĻŋ
- āĻŽāĻžāύāĻŦāĻĻā§āĻšā§āϰ āĻĻā§āϰā§āĻāϤāĻŽ āĻā§āώ āĻā§āύāĻāĻŋ?
- āϏā§āύāĻžāϝāĻŧā§āĻā§āώ
- āϰāĻā§āϤāĻā§āώ
- āϝāĻā§ā§ āĻā§āώ
- āĻĒā§āĻļāĻŋ āĻā§āώ
Ans. āϏā§āύāĻžāϝāĻŧā§āĻā§āώāĨ¤
- āĻŽāĻžāύā§āώā§āϰ āĻŦāĻā§āώāĻĻā§āĻļā§āϝāĻŧ āĻāĻļā§āϰā§āĻāĻžāϰ āϏāĻāĻā§āϝāĻž āĻāϝāĻŧāĻāĻŋ?
- 7
- 5
- 12
- 9
Ans. 12
- āĻŽāĻžāύāĻŦāĻĻā§āĻšā§ āϞā§āĻšāĻŋāϤ āĻāĻŖāĻŋāĻāĻžāϰ āĻāϝāĻŧā§āώā§āĻāĻžāϞ āĻāϤ āĻĻāĻŋāύ?
- 90 days
- 120 days
- 150 days
- 18 days
Ans. 120 days
- āĻŽāĻžāύā§āώā§āϰ āĻāϝāĻŧāĻāĻŋ āĻĒā§āϝāĻžāϰāĻžāĻĨāĻžāĻāϰāϝāĻŧā§āĻĄ āĻā§āϰāύā§āĻĨāĻŋ āĻĨāĻžāĻā§?
- 3
- 4
- 2
- 1
Ans. 4
- āĻā§āύāĻāĻŋ āĻŽāĻžāύāĻŦ āĻŦā§āĻā§āĻā§āϰ āĻŽā§āϝāĻžāϞāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāύ āĻāĻŖāĻŋāĻāĻžāϰ āĻ
āĻāĻļ?
- Bowman’s Capsule
- Henle’s Loop
- Collecting tubule
- Renal tubule
Ans. Bowman’s Capsule
- āĻāϰā§āĻŖā§āϰ āĻā§āύ āĻ
āĻāĻļā§ āĻ
āϰā§āĻāĻžāύ āĻ
āĻŦ āĻāϰā§āĻāĻŋâ āĻĻā§āĻāĻž āϝāĻžāϝāĻŧ?
- Sacculas
- Cochlea
- Middle ear
- External ear
Ans. Cochlea
- āĻŦāĻžāĻāϞāĻžāĻĻā§āĻļ āĻā§āύ āĻĒā§āϰāĻžāĻŖāĻŋāĻā§āĻā§āϞāĻŋāĻ āĻ
āĻā§āĻāϞ⧠āĻ
āĻŦāϏā§āĻĨāĻŋāϤ?
- Palaearctic Region
- Nearctic Region
- Oriental Region
- Neotropical Region
Ans. Oriental Region
- āϏāύā§āϧāĻŋāĻĒāĻĻ āĻĒā§āϰāĻžāĻŖāĻŋāϰāĻž āĻā§āύ āĻĒāϰā§āĻŦā§āϰ āĻ
āύā§āϤāϰā§āĻāϤ?
- Annelida
- Platyhelminthes
- Mollusca
- Arthropoda
Ans. Arthropoda
- āĻāύāϏā§āϞāĻŋāύ āĻā§āύ āϧāϰāύā§āϰ āĻĒāĻĻāĻžāϰā§āĻĨ?
- āĻāĻŽāĻŋāώ
- āĻāϰā§āĻŦāĻŋ
- āĻļāϰā§āĻāϰāĻžāĻ
- āύāĻŋāĻāĻā§āϞāĻŋāĻ āĻāϏāĻŋāĻĄ
Ans. āĻāĻŽāĻŋāώ
āĻŦāĻžāĻāϞāĻž
- âāĻĻā§āϰā§āĻšâ āĻļāĻŦā§āĻĻā§āϰ āϏāύā§āϧāĻŋāĻŦāĻŋāĻā§āĻā§āĻĻ-
- āĻĻā§āĻ + āĻāĻšā§
- āĻĻā§āĻ + āϰā§āĻš
- āĻĻā§āϰ + āĻāĻš
- āĻĻā§āϰ + āĻš
Ans. āĻĻā§āĻ + āĻāĻšā§
- âāĻāĻāĻžāĻĻāĻļā§ āĻŦā§āĻšāϏā§āĻĒāϤāĻŋâ āĻŦāĻžāĻāϧāĻžāϰāĻžāĻāĻŋāϰ āĻ
āϰā§āĻĨ-
- āĻ āϏāĻŽā§āĻāĻŦ āĻŦāϏā§āϤā§
- āϏā§āϏāĻŽāϝāĻŧ
- āĻĻā§āĻāϏāĻŽāϝāĻŧ
- āĻā§āϰāĻšā§āϰ āĻĢā§āϰ
Ans. āϏā§āϏāĻŽāϝāĻŧ
- âāĻ āĻŦāϝāĻŧāϏ āϤāĻŦā§ āύāϤā§āύ āĻāĻŋāĻā§ āϤ⧠āĻāϰā§â āĻāĻāĻžāύ⧠âāϤāĻŦā§â āĻšāĻā§āĻā§-
- āĻŦāĻŋāĻļā§āώā§āϝ
- āĻŦāĻŋāĻļā§āώāĻŖ
- āϏāϰā§āĻŦāύāĻžāĻŽ
- āĻ āĻŦā§āϝāϝāĻŧ
Ans. āĻ āĻŦā§āϝāϝāĻŧ
- âāĻā§āώāĻŋāĻĒā§āϰâ āĻāϰ āĻŦāĻŋāĻĒāϰā§āϤ āĻļāĻŦā§āĻĻ-
- āĻĻā§āϰā§āϤ
- āĻāϤā§āϰ
- āĻŽāύā§āĻĨāϰ
- āĻāĻā§āĻāϞ
Ans. āĻŽāύā§āĻĨāϰ
- āĻŦāĻžāĻāϞāĻž āĻāĻžāώāĻžāϰ āύāĻŋāĻāϏā§āĻŦ āĻŦāĻŋāϰāĻžāĻŽāĻāĻŋāĻšā§āύ āĻā§āύāĻāĻŋ?
- āĻāĻŽāĻž
- āĻĒā§āϰāĻļā§āύāĻāĻŋāĻšā§āύ
- āĻĻāĻžāĻĄāĻŧāĻŋ
- āĻŦāĻŋāϏā§āĻŽāϝāĻŧāĻāĻŋāĻšā§āύ
Ans. āĻĻāĻžāĻĄāĻŧāĻŋ
- For match-making Sheela is on her own. āĻļā§āĻĻā§āϧ āĻ
āύā§āĻŦāĻžāĻĻ āĻā§āύāĻāĻŋ ?
- āĻā§āĻĄāĻŧāĻŋ āĻŽā§āϞāĻžāϤ⧠āĻļā§āϞāĻž āύāĻŋāĻā§āϰ āĻāĻā§āĻā§āĻŽāϤ⧠āĻāϞā§
- āĻāĻāĻāĻžāϞāĻŋāϤ⧠āĻļā§āϞāĻž āϤāĻžāϰ āύāĻŋāĻā§āϰ āĻŽāϤā§
- āĻāĻāĻāĻžāϞāĻŋāϤ⧠āĻļā§āϞāĻžāϰ āĻā§āĻĄāĻŧāĻŋ āύā§āĻ
- āύāĻŋāĻā§āϰ āĻāĻāĻāĻžāϞāĻŋ āĻļā§āϞāĻž āύāĻŋāĻā§āĻ āĻāϰā§
Ans. āĻāĻāĻāĻžāϞāĻŋāϤ⧠āĻļā§āϞāĻžāϰ āĻā§āĻĄāĻŧāĻŋ āύā§āĻ
- āϝā§āĻāϰā§āĻĸāĻŧ āĻļāĻŦā§āĻĻ āĻā§āύāĻāĻŋ?
- āύāĻĻā§
- āĻāϰāύāĻž
- āĻāϞāϧāĻŋ
- āĻĒāĻžāĻĨāĻžāϰ
Ans. āĻāϞāϧāĻŋ
- ‘āĻŽāĻžāύā§āώ āĻšāĻ’ āĻŦāĻžāĻā§āϝāĻāĻŋāϤ⧠āϰāϝāĻŧā§āĻā§-
- āĻ āύā§āύāϝāĻŧ
- āĻāĻĻā§āĻļ
- āĻ āύā§āϰā§āϧ
- āĻāĻĒāĻĻā§āĻļ
Ans. āĻāĻĒāĻĻā§āĻļ
- āϏāĻāĻžāϞ āϏāĻāĻžāϞ āĻāϏā§āĨ¤ āĻāĻāĻžāύ⧠‘āϏāĻāĻžāϞ āϏāĻāĻžāϞ’ āĻā§ āĻ
āϰā§āĻĨā§ āĻŦā§āϝāĻŦāĻšā§āϤ?
- āϤāĻžāĻĄāĻŧāĻžāϤāĻžāĻĄāĻŧāĻŋ
- āϏāĻāĻžāϞā§
- āĻā§āĻŦ āϏāĻāĻžāϞā§
- āĻĻā§āĻĒā§āϰā§āϰ āĻāĻā§
Ans. āϤāĻžāĻĄāĻŧāĻžāϤāĻžāĻĄāĻŧāĻŋ
- āĻŦāĻŋāĻĒāϰā§āϤāĻžāϰā§āĻĨāĻ āĻļāĻŦā§āĻĻā§āϰ āĻŽāĻŋāϞāύ⧠āĻā§āύ āĻĻā§āĻŦāύā§āĻĻā§āĻŦ āϏāĻŽāĻžāϏāĻāĻŋ āĻāĻ āĻŋāϤ?
- āϰāĻŦāĻŋ-āĻļāĻļā§
- āĻ āĻšāĻŋ-āύāĻā§āϞ
- āĻāĻžāĻāϝāĻŧāĻž-āĻĒāϰāĻž
- āϧāύā§-āĻĻāϰāĻŋāĻĻā§āϰ
Ans. āϧāύā§-āĻĻāϰāĻŋāĻĻā§āϰ
- āϏā§āĻŦāϰāϧā§āĻŦāύāĻŋāϰ āĻĒāϰāĻŋāĻŦāϰā§āϤāύ āϏāĻāĻā§āϰāĻžāύā§āϤ āĻā§āĻŖ, āĻŦā§āĻĻā§āϧāĻŋ āĻ āϏāĻŽā§āĻĒā§āϰāϏāĻžāϰāĻŖāĻā§ āĻāĻāϤā§āϰ⧠āĻŦāϞā§-
- āĻ āĻĒāĻļā§āϰā§āϤāĻŋ
- āĻ āĻĒāĻāĻĻā§āϧāĻŋ
- āϤāĻŋāĻļā§āϰā§āϤāĻŋ
- āϤā§āϰāĻŋāĻā§āĻŖāĻž
Ans. āĻ āĻĒāĻļā§āϰā§āϤāĻŋ
- āĻļā§āĻĻā§āϧ āĻŦāĻžāύāĻžāύ āĻā§āύāĻāĻŋ?
- āĻĻā§āϰāĻžāĻāĻžāĻā§āĻ
- āĻĻā§āϰāĻžāĻāĻžāĻā§āĻ
- āĻĻā§āϰāĻžāĻāĻžāĻā§āĻā§āώāĻž
- āĻĻā§āϰāĻžāĻāĻžāĻā§āώāĻž
Ans. āĻĻā§āϰāĻžāĻāĻžāĻā§āĻā§āώāĻž
- âāϞā§āĻāĻžāĻĒāĻĄāĻŧāĻž āĻŦāĻŋāώāϝāĻŧā§ āϤāĻžāϰ āϝ⧠āĻāĻā§āϰ āĻ
āύā§āϰāĻžāĻ āĻāĻŋāϞ, āĻ-āĻāĻĨāĻž āĻŦāϞāĻž āϝāĻžāϝāĻŧ āύāĻžāĨ¤â āĻāĻāĻŋ āĻā§ āϧāϰāύā§āϰ āĻŦāĻžāĻā§āϝ?
- āϏāϰāϞ
- āϝā§āĻāĻŋāĻ
- āĻŽāĻŋāĻļā§āϰ
- āĻāĻŖā§āĻĄ
Ans. āĻŽāĻŋāĻļā§āϰ
- āĻĒā§āϰāϤā§āϝāϝāĻŧ āĻ āĻŦāĻŋāĻāĻā§āϤāĻŋāĻšā§āύ āύāĻžāĻŽ āĻļāĻŦā§āĻĻāĻā§ āĻŦāϞā§-
- āϧāĻžāϤā§
- āĻĒā§āϰāϤā§āϝāϝāĻŧ
- āĻĒā§āϰāĻžāϤāĻŋāĻĒāĻĻāĻŋāĻ
- āύāĻžāĻŽ-āĻĒā§āϰāĻā§āϤāĻŋ
Ans. āĻĒā§āϰāĻžāϤāĻŋāĻĒāĻĻāĻŋāĻ
- ‘āϞāĻŖā§āĻĄāĻāĻŖā§āĻĄ’ āĻŦā§āĻāĻžāϝāĻŧ āĻā§āύāĻāĻŋ?
- āĻĻāĻā§āώāϝāĻā§āĻ
- āϤā§āϞāĻāĻžāϞāĻžāĻŽ
- āĻšāĻžāĻā§ āĻšāĻžāĻāĻĄāĻŧāĻŋ āĻāĻžāĻāĻž
- āĻāĻŖā§āĻĄāĻĒāĻŋāϰ
Ans. āĻĻāĻā§āώāϝāĻā§āĻ
- ‘āϝ⧠āĻāϰāĻŖāĻĒā§āώāĻŖ āĻāϰ⧒ āĻŦāĻžāĻā§āϝāĻāĻŋāϰ āϏāĻāĻā§āĻāĻŋāϤ āϰā§āĻĒ āĻā§?
- āĻāϰā§āϤāĻž
- āĻāϰā§āϤāĻž
- āĻĒā§āϰā§āώāĻŋāϤāĻāϰā§āϤā§āĻāĻž
- āĻā§āϰāĻĒā§āĻļ
Ans. āĻā§āϰāĻĒā§āĻļ
- ‘āĻāĻ āϝāĻĻāĻŋ āĻŦāĻžāĻŦāĻž āĻāϏāϤā§āύ, āĻā§āĻŽāύ āĻŽāĻāĻž āĻšāϤ⧒ āĻŦāĻžāĻā§āϝāĻāĻŋāϤ⧠āĻā§āύ āĻāĻžāϞā§āϰ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻĒā§āϰā§ā§āĻ āĻāĻā§āĻā§?
- āύāĻŋāϤā§āϝāĻŦā§āϤā§āϤ āĻ āϤā§āϤ
- āĻĒā§āϰāĻžāĻāĻāĻŋāϤ āĻ āϤā§āϤ
- āύāĻŋāϤā§āϝāĻŦā§āϤā§āϤ āĻāĻŦāĻŋāώā§āϝā§
- āĻāĻāĻŽāĻžāύ āĻāĻŦāĻŋāώā§āϝā§
Ans. āύāĻŋāϤā§āϝāĻŦā§āϤā§āϤ āĻ āϤā§āϤ
- ‘āĻŽāĻžāϤāĻžāϞ āĻāϤā§āĻŦāĻŋāĻ’ āĻāĻžāϰ āĻā§āϰāύā§āĻĨā§āϰ āύāĻžāĻŽ?
- āϏā§āϝāĻŧāĻĻ āĻāϝāĻŧāĻžāϞā§āĻāϞā§āϞāĻžāĻšā§
- āϏā§āϝāĻŧāĻĻ āĻāϞ⧠āĻāĻšāϏāĻžāύ
- āĻ āĻŽāĻŋāϝāĻŧ āĻāĻā§āϰāĻŦāϰā§āϤā§
- āĻļāĻžāĻŽāϏā§āϰ āϰāĻžāĻšāĻŽāĻžāύ
Ans. āĻļāĻžāĻŽāϏā§āϰ āϰāĻžāĻšāĻŽāĻžāύ
- ‘āĻšāĻžāĻāĻĄāĻŧāĻŋ āĻšāĻžāĻāĻĄāĻŧāĻŋ āϏāύā§āĻĻā§āĻļ’ āĻŦāĻžāĻā§āϝāĻžāĻāĻļāĻāĻŋ āĻŦāĻšā§āĻŦāĻāύāĻā§āĻāĻžāĻĒāĻ āĻšāϝāĻŧā§āĻā§-
- āϏāĻŽāώā§āĻāĻŋāĻŦāĻžāĻāĻ āĻļāĻŦā§āĻĻāϝā§āĻā§
- āĻŦāĻšā§āϤā§āĻŦāĻā§āĻāĻžāĻĒāĻ āĻĒāĻĻāϝā§āĻā§
- āĻĒāĻĻā§āϰ āĻĻā§āĻŦāĻŋāϤā§āĻŦ āĻĒā§āϰā§ā§āĻā§
- āϏāĻŽāĻžāϰā§āĻĨāĻ āĻļāĻŦā§āĻĻā§āϰ āĻĻā§āĻŦāĻŋāϤā§āĻŦ āĻĒā§āϰā§ā§āĻā§
Ans. āĻĒāĻĻā§āϰ āĻĻā§āĻŦāĻŋāϤā§āĻŦ āĻĒā§āϰā§ā§āĻā§
- ‘āĻŦā§āĻāĻžāϰāĻž’ āĻļāĻŦā§āĻĻāĻāĻŋ āĻā§āύ āĻāĻžāώāĻž āĻĨā§āĻā§ āĻāϏā§āĻā§?
- āĻĢāĻžāϰāϏāĻŋ
- āĻĢāϰāĻžāϏāĻŋ
- āĻāϰāĻŦāĻŋ
- āĻšāĻŋāύā§āĻĻāĻŋ
Ans. āĻĢāĻžāϰāϏāĻŋ
- āύāĻŋāĻā§āϰ āĻā§āύāĻāĻŋ ‘āĻĒā§āĻĨāĻŋāĻŦā§’ āĻāϰ āϏāĻŽāĻžāϰā§āĻĨāĻ āĻļāĻŦā§āĻĻ āύāϝāĻŧ?
- āĻ āĻŦāύā§
- āĻŦāϏā§āϧāĻž
- āĻ āĻāϞāĻž
- āύāĻŦāύā§
Ans. āύāĻŦāύā§
- āĻāϰāĻā§āĻļā§āϰ āĻāϞā§āĻĒā§āϰ āĻāĻĨāĻž āĻāĻžāϰ āĻŽāύ⧠āĻšāϝāĻŧā§āĻāĻŋāϞ?(āĻĒā§āϰāĻžāϤāύ āϏāĻŋāϞā§āĻŦāĻžāϏ)
- āĻšāĻžāĻŦāĻŋāĻŦā§āϞā§āϞāĻžāĻšāϰ
- āĻāĻāύā§āϏā§āϰ
- āĻŽāĻāϏā§āĻĻā§āϰ
- āĻŽā§āĻĻāĻžāĻŦā§āĻŦā§āϰā§āϰ
Ans. āĻāĻāύā§āϏā§āϰ
- āĻāĻžāϰā§āĻāύ āĻšāϞā§āϰ āĻāϞā§āϞā§āĻ āĻāĻā§ āĻā§āύ āϰāĻāύāĻžāϝāĻŧ?(āĻĒā§āϰāĻžāϤāύ āϏāĻŋāϞā§āĻŦāĻžāϏ)
- āϏāĻžāĻšāĻŋāϤā§āϝ⧠āĻā§āϞāĻž
- āĻāĻā§āĻļā§āϰ āĻāϞā§āĻĒ
- āĻŦāĻžāĻāϞāĻžāĻĻā§āĻļ
- āĻāĻāĻāĻŋ āĻĢāĻā§āĻā§āϰāĻžāĻĢ
Ans. āĻāĻā§āĻļā§āϰ āĻāϞā§āĻĒ
- āĻŽāϰā§āϏāĻŋāϝāĻŧāĻž āĻā§?(āĻĒā§āϰāĻžāϤāύ āϏāĻŋāϞā§āĻŦāĻžāϏ)
- āĻ āϏā§āϤā§āϰāĻŦāĻŋāĻļā§āώ
- āĻšāĻžāĻšāĻžāĻāĻžāϰ
- āĻā§āϰāύā§āĻĻāύ
- āĻļā§āĻāĻā§āϤāĻŋ
Ans. āĻļā§āĻāĻā§āϤāĻŋ
- āĻāĻžāϰ āĻāϤā§āĻŽāĻšāϤā§āϝāĻž āĻ
āύā§āĻā§āϰ āĻāĻžāĻā§ āĻĒāϰāĻŋāĻšāĻžāϏā§āϰ āĻŦāĻŋāώāϝāĻŧ āĻšāϝāĻŧā§ āĻĻā§āĻāĻž āĻĻāĻŋāϞ?(āĻĒā§āϰāĻžāϤāύ āϏāĻŋāϞā§āĻŦāĻžāϏ)
- āĻāϞāĻŋāĻŽāĻĻā§āĻĻāĻŋ
- āĻŦāĻŋāϞāĻžāϏā§
- āϤāĻĒā§
- āĻšā§āĻŽāύā§āϤā§
Ans. āĻŦāĻŋāϞāĻžāϏā§
- ‘āĻ āĻāĻŋ āĻā§āώā§āϧāĻžāϤā§āϰ āĻĒāĻžāĻāĻāϰāĻžāϝāĻŧ āĻŦāĻžāĻā§…āĨ¤’ āĻāϰāĻŖāĻāĻŋāϰ āĻļā§āύā§āϝāϏā§āĻĨāĻžāύ⧠āĻā§ āĻšāĻŦā§?(āĻĒā§āϰāĻžāϤāύ āϏāĻŋāϞā§āĻŦāĻžāϏ)
- āĻŦā§āĻĻāύāĻž āĻŽāĻāϞā§āĻŽā§āϰ
- āĻā§āĻŦāύā§āϰ āĻāĻšāĻžāĻāĻžāϰāĻŋ
- āĻŽā§āϤā§āϝā§āϰ āĻāϝāĻŧāĻā§āϰā§
- āĻŽāϰāĻŖā§āϰ āϰā§āύāĻžāĻāĻžāϰāĻŋ
Ans. āĻŽā§āϤā§āϝā§āϰ āĻāϝāĻŧāĻā§āϰā§
- āĻāĻžāϰ āĻāĻžāϞā§āĻŦāĻžāϏāĻžāϝāĻŧ āĻāĻāĻžāĻļā§āϰ āĻŦāĻŋāϏā§āϤāĻžāϰ āĻāĻŋāϞ?(āĻĒā§āϰāĻžāϤāύ āϏāĻŋāϞā§āĻŦāĻžāϏ)
- āĻŽā§āϤā§āϝā§āĻā§āĻāϝāĻŧ
- āĻŦāĻŋāϞāĻžāϏā§
- āĻšā§āĻŽāύā§āϤā§
- āĻ āĻĒā§
Ans. āĻšā§āĻŽāύā§āϤā§
- ‘āĻļāĻžāĻŽāϞāĻž’ āĻļāĻŦā§āĻĻāĻāĻŋ āĻā§āύ āϰāĻāύāĻžāϝāĻŧ āĻŦā§āϝāĻŦāĻšā§āϤ āĻšāϝāĻŧā§āĻā§?(āĻĒā§āϰāĻžāϤāύ āϏāĻŋāϞā§āĻŦāĻžāϏ)
- āĻšā§āĻŽāύā§āϤā§
- āĻ āϰā§āϧāĻžāĻā§āĻā§
- āĻāĻŽāϞāĻžāĻāĻžāύā§āϤā§āϰ āĻāĻŦāĻžāύāĻŦāύā§āĻĻāĻŋ
- āĻāϞāĻŋāĻŽāĻĻā§āĻĻāĻŋ āĻĻāĻĢāĻžāĻĻāĻžāϰ
Ans. āĻāĻŽāϞāĻžāĻāĻžāύā§āϤā§āϰ āĻāĻŦāĻžāύāĻŦāύā§āĻĻāĻŋ
- āĻāĻŦāϰ āĻāĻŦāĻŋāϤāĻžāϝāĻŧ āĻŦā§āϝāĻŦāĻšā§āϤ âāĻĻā§āĻĄāĻŧā§â āĻļāĻŦā§āĻĻā§āϰ āĻ
āϰā§āĻĨ āĻā§?(āĻĒā§āϰāĻžāϤāύ āϏāĻŋāϞā§āĻŦāĻžāϏ)
- āĻŦāĻŋāϞāĻŽā§āĻŦ
- āĻŦāĻĄāĻŧ
- āĻĻāĻĄāĻŧāĻŋ
- āĻĻā§āĻĄāĻŧāĻā§āĻŖ
Ans. āĻĻā§āĻĄāĻŧāĻā§āĻŖ
- āĻā§āύ āĻŦāĻžāĻā§āϝāĻāĻŋ âāĻ
āĻĒāϰāĻžāĻšā§āϰ āĻāϞā§āĻĒâ āĻĨā§āĻā§ āĻāĻĻā§āϧā§āϤ āĻšāϝāĻŧā§āĻā§?(āĻĒā§āϰāĻžāϤāύ āϏāĻŋāϞā§āĻŦāĻžāϏ)
- āĻĒāĻžāĻĒāĻā§ āĻā§āĻŖāĻž āĻāϰāĻž āϝāĻžāϝāĻŧ, āĻĒāĻžāĻĒā§āĻā§ āύāϝāĻŧ
- āĻā§āϰ āĻ āϧāĻŽ āύāϝāĻŧ, āĻā§āϰāĻŋ āύāĻŋāĻā§āώā§āĻ
- āϰā§āĻāĻā§ āĻā§āĻŖāĻž āĻāϰāĻž āϝāĻžāϝāĻŧ, āϰā§āĻā§āĻā§ āĻā§āύ?
- āĻĻāϰāĻŋāĻĻā§āϰ āύāϝāĻŧ, āĻĻāĻžāϰāĻŋāĻĻā§āϰ āĻā§āĻŖāĻž āĻāϰ
Ans. āϰā§āĻāĻā§ āĻā§āĻŖāĻž āĻāϰāĻž āϝāĻžāϝāĻŧ, āϰā§āĻā§āĻā§ āĻā§āύ?
āĻāĻāϰā§āĻāĻŋ
Read the following passage and answer the questions below (1-6)
Recently, significant problems regarding energy use have emerged. Enormous amounts of pollutants are being emitted from power plants, factories, and automobiles, which are worsening the condition of the earth. This environmental degradation is a clear result of acid rain, increased levels of carbon dioxide in the atmosphere, and other forms of air pollution. Acid rain and air pollution, for instance, are devastating forests, crops, and lakes over wide areas all over the world. Since the 1950s, carbon dioxide levels in the atmosphere have increased by 13%, setting the stage for global warming. As atmospheric temperature rise, grain output may significantly decrease, making it more difficult for farmers to keep pace with the growth of population. In urban areas, air pollution is taking a toll on the buildings and human health. To reduce the amount of environmental damage in cities, developed countries have devised technology to control the harmful emissions. However, as these countries already have an abundance of vehicles that continue to grow in number, the efficacy of these measures is diminished. Since cars and other vehicles create more air pollution than any other human activity, the most effective means to reduce pollution is to decrease the number of vehicles. A major shift away from automobile usage in urban areas may be
possible with the aid of urban planning.
- The passage is about:
- The role of pollutants is increasing air pollution all over the world
-
Hazardous effects of air pollution and the role of
urban planners in improving living conditions - The devastating effect of acid rain of forest resources, crops and water bodies
- The extensive use of cars and vehicles is diminishing the growth of a risk-free society
Ans. Hazardous effects of air pollution and the role of urban planners in improving living conditions
- The word ‘pollutants’ in the passage is a/an –
- adjective
- adverb
- verb
- noun
Ans. noun
- The word ’emitted’ can be replaced by:
- engaged
- discharged
- derived
- reduced
Ans. discharged
- ‘taking a toll’ in the passage means:
- being expensive
- causing a barrier
- causing damage
- ringing a bell
Ans. causing damage
- What happens with the increase in the atmospheric temperature?
- The weather becomes very pleasant
- It causes flooding in urban areas
- Crop production is reduced
- Urban areas become overpopulated
Ans. Crop production is reduced
- An antonym of ‘efficacy’ is:
- Uselessness
- representation
- reproduction
- efficiency
Ans. Uselessness
- The correct spelling is:
- Intuishon
- intusion
- intution
- intuition
Ans. intuition
- Since I _____ for our lunch, I _____ to attract the waiter’s attention.
- Paid, tried
- paid, will be trying
- pay, tried
- was paying, tried
Ans. was paying, tried
- I _____ at six o’clock, but _____ to be up by five
- normally get up, I have sometimes
- normally get up, sometimes I have
- get normally up, sometimes I get
- normally up, I sometime have
Ans. normally get up, sometimes I have
- We _____ a cat, but one day it just disappeared.
- would have
- have
- used to have
- do have
Ans. used to have
- The antonym of “sporadic” is-
- occasional
- intermittent
- frequent
- isolated
Ans. frequent
- “Illuminate” means-
- deviant
- brighten
- illegal
- deceptive
Ans. brighten
- When _____ here?
- have you get
- did you get
- you get
- had you get
Ans. did you get
- Why _____ return the money?
- you did not
- you
- did you not
- you didn’t
Ans. did you not
- High school students should not be _____ as being immature or naive
- helped
- directed
- taught
- categorized
Ans. categorized
- Albert Einstein’s Theory of Relativity _____ the foundation of the possibility of time travel
- will lay
- laying
- laid
- lay
Ans. laid
- Although the telescope _____ into space in 1990, its inception was almost a half-century earlier
- launched
- launching
- was launched
- launch
Ans. was launched
- There is still no way to wholly escape _____ the effects on the layers of gases enveloping the earth.
- in
- of
- from
- at
Ans. from
- The 32,000 word novel ‘The Time Machine _____ H.G. Wells popularized time travel.
- into
- of
- by
- in
Ans. by
- The U.S. congress restored the Medal of Honor that was first presented in 1965 to a women _____ name few of us have heard.
- which
- who
- whose
- whom
Ans. whose
- Dr. Mary Edwards Walker was a surgeon, soldier, _____ fighter for women’s rights.
- With
- and
- of
- also
Ans. and
- Because of discrimination ____ women, she was required to work as a nurse rather than a doctor.
- for
- of
- against
- with
Ans. against
- A good teacher is one who can help his/her student _____errors in their work and suggest ways to _____ them.
- identify, rectify
- commit, overcome
- find, resist
- eliminate, perpetuate
Ans. identify, rectify
- We need to do more to _____ the poor flood victims.
- reach out to
- live up to
- put up with
- make up for
Ans. make up for
- In some countries much of the natural environment has been transformed _____ farmland ____ a subsequent loss of species richness.
- out of, along with
- into, with
- into, as a resuit of
- away from, resulting from
Ans. into, as a resuit of
- Students should learn in an environment _____ pressure and with the freedom to choose what they want to learn.
- soaked in
- deprived of
- devoid of
- regardless of
Ans. devoid of
- We have to _____ our political differences and come together to _____ a joint fight against poverty and corruption.
- cover, venture
- rise over, pull off
- mend, prevail
- transcend, lead
Ans. transcend, lead
- Teaching can be a tough job, particularly when you have to _____ aggressive and unruly students.
- cope on
- deal with
- handle to
- work out
Ans. deal with
- _____ the importance of zoos as tourist attractions, until recently there has been little research to investigate the nature, attitudes and motivations of zoo visitors.
- Despite
- Although
- In spite
- Given
Ans. Despite
- I haven’t been feeling very well _____
- of late
- not long ago
- currently
- by now
Ans. of late