DU A Unit Admission Question Solution 2019-2020
āύāĻŋāĻā§āϰ āĻāĻŋāĻĄāĻŋāĻāϤ⧠āĻĻā§āĻā§ āύāĻžāĻ āĻŦāĻŋāϏā§āϤāĻžāϰāĻŋāϤ:
āĻā§āϰā§āϏāĻāĻŋ āĻāĻŋāύāϤ⧠āĻĒāĻžāĻļā§āϰ āĻŦāĻžāĻāύāĻāĻŋ āĻā§āϞāĻŋāĻ āĻāϰ:  
āĻā§āϰā§āϏā§āϰ āĻĄā§āĻŽā§ āĻāĻŋāĻĄāĻŋāĻ(āĻāĻāĻžāĻŦā§ āĻĒāĻĻāĻžāϰā§āĻĨāĻŦāĻŋāĻā§āĻāĻžāύ+āϰāϏāĻžā§āύ+āĻāĻā§āĻāϤāϰāĻāĻŖāĻŋāϤ āĻāϰ āĻŦāĻŋāĻāϤ āĻŦāĻŋāĻļ āĻŦāĻāϰā§āϰ āϏāĻāϞ āĻĒā§āϰāĻļā§āύā§āϰ āϏāĻŽāĻžāϧāĻžāύ āĻĨāĻžāĻāĻŦā§ āĻāĻŋāĻĄāĻŋāĻāϤā§)
āĻĒāĻĻāĻžāϰā§āĻĨāĻŦāĻŋāĻā§āĻāĻžāύ
- āĻĻā§āĻāĻāĻŋ āĻā§āĻā§āĻāϰ \(\overrightarrow{\mathbf{A}}=3 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}\) āĻāĻŦāĻ \(\overrightarrow{\mathbf{B}}=5 \hat{\mathbf{i}}+5 \hat{\mathbf{k}}\) āĻāϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻā§āĻŖ āĻāϤ?
- \(60^{\circ}\)
- \(30^{\circ}\)
- \(45^{\circ}\)
- \(90^{\circ}\)
Ans. \(60^{\circ}\)
- āϏā§āĻĨāĻŋāϰ āĻ
āĻŦāϏā§āĻĨāĻžāϝāĻŧ āĻĨāĻžāĻāĻž āĻāĻāĻāĻŋ āĻŦāϏā§āϤ⧠āĻŦāĻŋāϏā§āĻĢā§āϰāĻŋāϤ āĻšāϝāĻŧā§ \(\mathrm{m}_{1}\) āĻ \(\mathbf{m}_{2}\) āĻāϰā§āϰ
āĻĻā§āĻāĻāĻŋ āĻŦāϏā§āϤā§āϤ⧠āĻĒāϰāĻŋāĻŖāϤ āĻšāϝāĻŧā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ \(\mathbf{v}_{\mathbf{1}}\) āĻ \(\mathbf{v}_{2}\) āĻŦā§āĻā§ āĻŦāĻŋāĻĒāϰā§āϤ āĻĻāĻŋāĻā§ āĻāϞāĻŽāĻžāύāĨ¤ \(\frac{\mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{2}}}\) āĻāϰ āĻ āύā§āĻĒāĻžāϤ āĻāϤ?- \(\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}\)
- \(-\frac{m_{1}}{m_{2}}\)
- \(\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}\)
- \(\sqrt{\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}}\)
Ans. \(\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}\)
-
āĻāĻāĻāĻŋ āĻāĻžāĻĄāĻŧāĻŋ āϏā§āĻĨāĻŋāϰ āĻ
āĻŦāϏā§āĻĨāĻž (P āĻŦāĻŋāύā§āĻĻā§) āĻšāϤ⧠āϏā§āĻāĻž āϰāĻžāϏā§āϤāĻžāϝāĻŧ āϝāĻžāϤā§āϰāĻž
āĻļā§āϰ⧠āĻāϰāϞāĨ¤ āĻāĻŋāĻā§ āϏāĻŽāϝāĻŧ āĻĒāϰ⧠āĻāĻžāĻĄāĻŧāĻŋāĻāĻŋ āĻŽāύā§āĻĻāύā§āϰ āĻĢāϞ⧠āĻĨā§āĻŽā§ āĻā§āϞ āĻāĻŦāĻ āĻāĻāĻ āĻāĻžāĻŦā§ (āĻĒā§āϰāĻĨāĻŽ āĻāϤāĻŋ āĻŦāĻžāĻĄāĻŧāĻŋāϝāĻŧā§ āĻāĻŦāĻ āĻĒāϰ⧠āĻāϤāĻŋ āĻāĻŽāĻŋāϝāĻŧā§) āĻāĻŦāĻžāϰ āϝāĻžāϤā§āϰāĻž āĻļā§āϰ⧠āĻāϰ⧠P āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻĢāĻŋāϰ⧠āĻāϏāϞā§āĨ¤ āύāĻŋāĻā§āϰ āĻā§āύ āϞā§āĻāĻāĻŋāϤā§āϰāĻāĻŋ āĻāĻžāĻĄāĻŧāĻŋāϰ āĻāϤāĻŋāĻā§ āĻĒā§āϰāĻāĻžāĻļ āĻāϰā§?Ans.
-
- āύāĻŋāĻā§āϰ āĻā§āύāĻāĻŋ āĻāϰā§āϰ āĻāĻāĻ āύāϝāĻŧ?
- a.m.u
- \(\mathrm{Nm}^{-1} \mathrm{~s}^{2}\)
- \(\mathrm{MeV}\)
- \(\frac{\mathrm{MeV}}{\mathrm{c}^{2}}\)
Ans. \(\mathrm{MeV}\)
- āϏāϰāϞ āĻāύā§āĻĻāĻŋāϤ āĻāϤāĻŋāϤ⧠āϏā§āĻĒāύā§āĻĻāύāϰāϤ āĻĻā§āĻāĻŋ āĻāĻŖāĻžāϰ āϏāϰāĻŖ \(\mathbf{x}_{1}=\mathbf{A} \sin \omega \mathbf{t}\)
āĻāĻŦāĻ \(\mathbf{x}_{\mathbf{2}}=\mathbf{A} \cos \omega \mathbf{t}\) āϝ⧠āĻā§āύ⧠āϏāĻŽāϝāĻŧā§ āĻāĻĻā§āϰ āĻŽāϧā§āϝ⧠āĻĻāĻļāĻž āĻĒāĻžāϰā§āĻĨāĻā§āϝ āĻāϤ āĻšāĻŦā§?- \(2 \pi\)
- \(\pi\)
- \(\frac{\pi}{2}\)
- \(\frac{\pi}{4}\)
Ans. \(\frac{\pi}{2}\)
- āĻŦā§āϝāϤāĻŋāĻāĻžāϰā§āϰ āĻā§āώā§āϤā§āϰ⧠āĻāĻā§āĻā§āĻŦāϞ āĻŦāĻž āĻāĻ āύāĻŽā§āϞāĻ āĻāĻžāϞāϰā§āϰ āĻļāϰā§āϤ āĻā§āύāĻāĻŋ?
- \(\sin \theta=(2 n+1) \frac{\lambda}{2}\)
- a \(\sin \theta=n \lambda\)
- \(\sin \theta=n \frac{\lambda}{2}\)
- \(a \sin \theta=(2 n+1) \lambda\)
Ans. a \(\sin \theta=n \lambda\)
- āύāĻŋāĻā§āϰ āĻŦāϰā§āϤāύā§āϤ⧠āϤāĻĄāĻŧāĻŋā§āĻĒā§āϰāĻŦāĻžāĻš \(\mathbf{I}_{\mathbf{1}}\) āĻāϰ āĻŽāĻžāύ āĻāϤ?
- \(0.2 \mathrm{~A}\)
- \(0.4 \mathrm{~A}\)
- \(0.6 \mathrm{~A}\)
- \(1.2 \mathrm{~A}\)
Ans. \(0.4 \mathrm{~A}\)
- āĻāĻāĻāĻŋ āĻāĻžāϰā§āύ⧠āĻāĻā§āĻāĻŋāύ 500 K āĻāĻŦāĻ 250 k āϤāĻžāĻĒāĻŽāĻžāϤā§āϰāĻžāϰ āĻāϧāĻžāϰā§āϰ
āĻŽāĻžāϧā§āϝāĻŽā§ āĻĒāϰāĻŋāĻāĻžāϞāĻŋāϤ āĻšāϝāĻŧāĨ¤ āĻĒā§āϰāϤā§āϝā§āĻ āĻāĻā§āϰ⧠āĻāĻā§āĻāĻŋāύ āϝāĻĻāĻŋ āĻā§āϏ āĻĨā§āĻā§ 1kcal āϤāĻžāĻĒ āĻā§āϰāĻšāĻŖ āĻāϰ⧠āϤāĻžāĻšāϞ⧠āĻĒā§āϰāϤā§āϝā§āĻ āĻāĻā§āϰ⧠āϤāĻžāĻĒ āĻā§āϰāĻžāĻšāĻā§ āϤāĻžāĻĒ āĻŦāϰā§āĻāύ āĻāϰāĻžāϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ āĻāϤ?- 500 kcal
- 1000 cal
- 500 cal
- 10 kcal
Ans. 500 cal
- q āĻĒāϰāĻŋāĻŽāĻžāĻŖ āĻāϧāĻžāύ āĻāĻāĻāĻŋ āĻā§āĻŽā§āĻŦāĻ āĻā§āώā§āϤā§āϰ \(\overrightarrow{\mathbf{B}}\) āĻāϰ āϏāĻžāĻĨā§ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞā§
\(\overrightarrow{\mathbf{v}}\) āĻŦā§āĻā§ āĻāϤāĻŋāĻļā§āϞāĨ¤ āĻāĻā§āϤ āϏā§āĻĨāĻžāύ⧠āĻāĻāĻāĻŋ āϤāĻĄāĻŧāĻŋā§āĻā§āώā§āϤā§āϰ \(\overrightarrow{\mathbf{E}}\) āĻĨāĻžāĻāϞ⧠āĻāϧāĻžāύā§āϰ āĻāĻĒāϰ āĻā§āϰāĻŋāϝāĻŧāĻžāĻļā§āϞ āĻŦāϞ āĻāϤ āĻšāĻŦā§?- \(\mathrm{q}(\overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})\)
- \(\mathrm{q}(\overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{B}})\)
- \(\mathrm{q} \overrightarrow{\mathrm{E}}\)
- \(q(\vec{E}+\vec{B})\)
Ans. \(\mathrm{q} \overrightarrow{\mathrm{E}}\)
- āĻāĻžāĻāĻā§āϰ āĻāĻžāϰ āĻšāĻŋāϏāĻžāĻŦā§ āĻŦā§āϝāĻŦāĻšā§āϤ āĻāĻāĻāĻŋ āĻĒā§āϰ⧠āĻāĻžāĻ (āĻĒā§āϰāϤāĻŋāϏāϰāĻžāĻā§āĻ
1.5) āĻāĻŖā§āĻĄā§āϰ āĻāĻĒāϰ āĻĨā§āĻā§ āĻāĻžāĻĄāĻŧāĻž āύāĻŋāĻā§āϰ āĻĻāĻŋāĻā§ āϤāĻžāĻāĻžāϞ⧠āĻāĻžāĻāĻā§āϰ āĻāĻĒāϰ āĻāĻāĻāĻŋ āĻĻāĻžāĻ āĻāĻžāĻā§āϰ āĻāĻĒāϰ āĻĒā§āϰāĻžāύā§āϤ āĻĨā§āĻā§ 6 cm āύāĻŋāĻā§ āĻĻā§āĻāĻž āϝāĻžāϝāĻŧāĨ¤ āĻāĻžāĻ āĻāĻŖā§āĻĄāĻāĻŋāϰ āĻĒā§āϰā§āϤā§āĻŦ āĻāϤ?- 4 cm
- 6 cm
- 9 cm
- 12 cm
Ans. 9 cm
- āĻāĻāĻāĻŋ āĻŦāϏā§āϤ⧠\(\pi \mathrm{m}\) āĻŦā§āϝāĻžāϏāĻžāϰā§āϧā§āϰ āĻŦā§āϤā§āϤāĻžāĻāĻžāϰ āĻĒāĻĨā§ \(4.0 \mathrm{~m} / \mathrm{s}\) āϏāĻŽāĻĻā§āϰā§āϤāĻŋāϤā§
āĻā§āϰāĻā§āĨ¤ āĻāĻāĻŦāĻžāϰ āĻā§āϰ⧠āĻāϏāϤ⧠āĻŦāϏā§āϤā§āĻāĻŋāϰ āĻāϤ āϏāĻŽāϝāĻŧ āϞāĻžāĻāĻŦā§?- \(2 / \pi^{2} \mathrm{~s}\)
- \(\pi^{2} / 2 \mathrm{~s}\)
- \(\pi / 2 \mathrm{~s}\)
- \(\pi^{2} / 4 \mathrm{~s}\)
Ans. \(\pi^{2} / 2 \mathrm{~s}\)
- 5 m āĻāĻā§āĻāϤāĻž āĻšāϤ⧠āĻāĻāĻāĻŋ āĻŦāϞāĻā§ 20 m/s āĻŦā§āĻā§ āĻ
āύā§āĻā§āĻŽāĻŋāĻā§āϰ āϏāĻžāĻĨā§
30° āĻā§āĻŖā§ āĻāĻĒāϰā§āϰ āĻĻāĻŋāĻā§ āύāĻŋāĻā§āώā§āĻĒ āĻāϰāĻž āĻšāϞā§āĨ¤ āϤāĻžāĻšāϞ⧠āĻŦāϞāĻāĻŋāϰ āĻŦāĻŋāĻāϰāĻŖāĻāĻžāϞ āĻāϤ?- \(\frac{10+\sqrt{198}}{9.8} \mathrm{~s}\)
- \(\frac{10 \sqrt{198}}{9.8} \mathrm{~s}\)
- \(\frac{10 \pm \sqrt{198}}{9.8} \mathrm{~s}\)
- \(\frac{10 \pm \sqrt{2}}{9.8} \mathrm{~s}\)
Ans. \(\frac{10+\sqrt{198}}{9.8} \mathrm{~s}\)
- 10 cm āϞāĻŽā§āĻŦāĻž āĻ 0.5 cm āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻāĻāĻāĻŋ āϤāĻžāĻŽāĻž āĻ āĻāĻāĻāĻŋ
āϞā§āĻšāĻžāϰ āϤāĻžāϰāĻā§ āĻā§āĻĄāĻŧāĻž āϞāĻžāĻāĻŋāϝāĻŧā§ āĻĻā§āϰā§āĻā§āϝ 20 cm āĻāϰāĻž āĻšāϞā§āĨ¤ āĻā§āĻĄāĻŧāĻž āϞāĻžāĻāĻžāύ⧠āϤāĻžāϰāĻāĻŋāĻā§ āĻŦāϞ āĻĒā§āϰā§ā§āĻ āĻāϰ⧠āϞāĻŽā§āĻŦāĻž āĻāϰāĻž āĻšāϞā§āĨ¤ āϞā§āĻšāĻžāϰ āĻāϝāĻŧāĻ-āĻāϰ āĻā§āĻŖāĻžāĻā§āĻ āϤāĻžāĻŽāĻžāϰ āĻāϝāĻŧāĻāϝāĻŧā§āϰ āĻā§āĻŖāĻžāĻā§āĻā§āϰ āĻĻā§āĻāĻā§āĻŖ āĻšāϞ⧠āϞā§āĻšāĻžāϰ āĻĻā§āϰā§āĻā§āϝ āĻŦā§āĻĻā§āϧāĻŋ āĻ āϤāĻžāĻŽāĻžāϰ āĻĻā§āϰā§āĻā§āϝ āĻŦā§āĻĻā§āϧāĻŋāϰ āĻ āύā§āĻĒāĻžāϤ āĻāϤ?- 1:8
- 1:6
- 1:4
- 1:2
Ans. 1:2
- āĻāĻāĻāĻŋ āϏā§āĻĨāĻŋāϰ āϤāϰāĻā§āĻā§ āĻĒāϰāĻĒāϰ āĻĻā§āĻāĻŋ āύāĻŋāϏā§āĻĒāύā§āĻĻ āĻŦāĻŋāύā§āĻĻā§āϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻĻā§āϰāϤā§āĻŦ 1m, āĻāϰ āϤāϰāĻā§āĻāĻĻā§āϰā§āĻā§āϝ āĻāϤ?
- 25 cm
- 50 cm
- 100 cm
- 200 cm
Ans. 200 cm
- āĻ
ā§āϝāĻžāϞā§āĻŽāĻŋāύāĻŋāϝāĻŧāĻžāĻŽ, āĻšāĻŋāϞāĻŋāϝāĻŧāĻžāĻŽ āĻāĻŦāĻ āϏāĻŋāϞāĻŋāĻāύā§āϰ āĻĒāĻžāϰāĻŽāĻžāĻŖāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻž āϝāĻĨāĻžāĻā§āϰāĻŽā§ 13, 2 āĻāĻŦāĻ 14 āĻšāϞā§, \(_{13} \mathbf{A l}^{27}+_{2}\mathbf{H e}^{4} \rightarrow _{14}\mathbf{S i}^{28}+()\) āύāĻŋāĻāĻā§āϞāĻŋāϝāĻŧāĻžāϰ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϤ⧠āĻ
āύā§āĻĒāϏā§āĻĨāĻŋāϤ āĻāĻŖāĻž āĻā§āύāĻāĻŋ?
- an \(\alpha\) particle
- an electron
- a positron
- a proton
Ans. āĻĒā§āϰāĻļā§āύāĻāĻŋ āĻā§āϞ āĻāĻā§āĨ¤
āϰāϏāĻžā§āύ
-
āĻĒā§āϰā§āĻāĻŋāύ āĻ
āĻŖā§āϰ āĻŽāϧā§āϝ⧠āĻ
ā§āϝāĻžāĻŽāĻžāĻāύ⧠āĻāϏāĻŋāĻĄā§āϰ āĻ
āĻŖā§āϏāĻŽā§āĻš āϝ⧠āĻŦāύā§āϧāύ āĻĻā§āĻŦāĻžāϰāĻž
āϝā§āĻā§āϤ āĻĨāĻžāĻā§-- Glycosidic bond
- Peptide bond
- Hydrogen bond
- Metallic bond
Ans. Peptide bond
-
āύāĻŋāĻŽā§āύā§āϰ āĻā§āύāĻāĻŋāĻā§ āϏāĻžāϧāĻžāϰāĻŖāϤ āϤāϰāϞ-āϤāϰāϞ āĻā§āϰā§āĻŽāĻžāĻā§āĻā§āϰāĻžāĻĢāĻŋ āĻŦāϞā§?
- āĻā§āϝāĻžāϏ āĻā§āϰā§āĻŽāĻžāĻā§āĻā§āϰāĻžāĻĢāĻŋ
- āĻāĻžāĻāĻ āĻā§āϰā§āĻŽāĻžāĻā§āĻā§āϰāĻžāĻĢāĻŋ
- āĻāϞāĻžāĻŽ āĻā§āϰā§āĻŽāĻžāĻā§āĻā§āϰāĻžāĻĢāĻŋ
- āĻĒāĻžāϤāϞāĻž āϏā§āϤāϰ āĻā§āϰā§āĻŽāĻžāĻā§āĻā§āϰāĻžāĻĢāĻŋ
Ans. āĻāĻžāĻāĻ āĻā§āϰā§āĻŽāĻžāĻā§āĻā§āϰāĻžāĻĢāĻŋ
- \(\mathrm{Fe}(\mathrm{s})\left|\mathrm{Fe}^{\mathrm{2}^{+}}(\mathrm{aq}) \| \mathrm{Br}_{2}(l) ; \mathrm{Br}^{-}(\mathrm{aq})\right| \mathrm{Pt}(\mathrm{s})\) āϤāĻĄāĻŧāĻŋā§
āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ āĻā§āώā§āϰ āϏāĻ āĻŋāĻ āĻā§āώ-āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻž āĻā§āύāĻāĻŋ?- \(\mathrm{Fe}+\mathrm{Br}_{2} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{Br}^{-}\)
- \(\mathrm{Fe}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Br}_{2}\)
- \(\mathrm{Fe}^{2+}+\mathrm{Br}_{2} \rightarrow \mathrm{Fe}+2 \mathrm{Br}^{-}\)
- \(\mathrm{Fe} \rightarrow \mathrm{Fe}^{3+}+2 \mathrm{Br}^{-}\)
Ans. \(\mathrm{Fe}+\mathrm{Br}_{2} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{Br}^{-}\)
- āύāĻŋāĻŽā§āύā§āϰ āĻā§āύ āϝā§āĻāĻāĻŋ āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋāĻ āϏāĻŽāĻžāĻŖā§āϤāĻž āĻĒā§āϰāĻĻāϰā§āĻļāύ āĻāϰā§?
- \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\)
- \(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}\)
- \(\left(\mathrm{CH}_{5}\right)_{2} \mathrm{NH}\)
- \(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}\)
Ans. \(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}\)
- āĻāϰā§āĻĻā§āϰ āĻŦāĻžāϤāĻžāϏā§āϰ āϏāĻāϏā§āĻĒāϰā§āĻļā§ āĻā§āϝāĻžāϞāϏāĻŋāϝāĻŧāĻžāĻŽ āĻāĻžāϰā§āĻŦāĻžāĻāĻĄ āύāĻŋāĻŽā§āύā§āϰ āĻā§āύ āϝā§āĻāĻāĻŋ
āĻā§āĻĒāύā§āύ āĻāϰā§?- Ethanal
- Ethane
- Ethyne
- Ethene
Ans. Ethyne
- āĻāϤā§āϤā§āĻāĻŋāϤ āĻ
āĻŦāϏā§āĻĨāĻžāϝāĻŧ āĻšāĻžāĻāĻĄā§āϰā§āĻā§āύ āĻĒāϰāĻŽāĻžāĻŖā§āϰ āĻā§āϝāĻŧāĻžāύā§āĻāĻžāĻŽ āϏāĻāĻā§āϝāĻž
n = 4,l= 1 āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻ āϰāĻŦāĻŋāĻāĻžāϞāĻāĻŋ āĻāĻŋ?- s orbital
- p orbital
- \(\mathrm{d}_{\mathrm{Z}}^{2}\) orbital
- \(\mathrm{d}_{\mathrm{x}}^{2}-\mathrm{y}^{2}\) orbital
Ans. p orbital
- \(\mathrm{CH}_{3}-\mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)-\mathrm{CH}_{2}-\mathrm{CHBr}-\mathrm{CHCl}-\mathrm{CH}_{3}\)āϝā§ā§āĻāĻāĻŋāϰ IUPAC āύāĻžāĻŽ āĻšāϞā§-
- 2-āĻā§āϞā§āϰā§-3-āĻŦā§āϰā§āĻŽā§-5-āĻāĻĨāĻžāĻāϞāĻšā§āĻā§āϏā§āύ
- 2-āĻā§āϞā§āϰā§-3-āĻŦā§āϰā§āĻŽā§-5-āĻŽāĻŋāĻĨāĻžāĻāϞāĻšā§āĻĒāĻā§āύ
- 3-āĻŦā§āϰā§āĻŽā§-2-āĻā§āϞā§āϰā§-5-āĻāĻĨāĻžāĻāϞāĻšā§āĻā§āϏā§āύ
- 3-āĻŦā§āϰā§āĻŽā§-2-āĻā§āϞā§āϰā§-5-āĻŽāĻŋāĻĨāĻžāĻāϞāĻšā§āĻĒāĻā§āύ
Ans. 3-āĻŦā§āϰā§āĻŽā§-2-āĻā§āϞā§āϰā§-5-āĻŽāĻŋāĻĨāĻžāĻāϞāĻšā§āĻĒāĻā§āύ
- āĻāĻžāϰā§āĻŦāύ āĻŽā§āϞ āĻšā§āϰāĻž āĻ āĻā§āϰāĻžāĻĢāĻžāĻāĻ-āĻ āĻāĻŋāύā§āύāϰā§āĻĒāĨ¤ āĻāĻĻā§āϰ āĻā§āώā§āϤā§āϰ⧠āĻā§āύ āĻāĻā§āϤāĻŋāĻāĻŋ
āϏāϤā§āϝ āύāϝāĻŧ?- āĻāĻāϝāĻŧā§āĻ āĻāĻžāϰā§āĻŦāύ āĻŽā§āϞ āĻĻā§āĻŦāĻžāϰāĻž āĻāĻ āĻŋāϤāĨ¤
- āĻšā§āϰāĻž āĻ āĻā§āϰāĻžāĻĢāĻžāĻāĻā§ āĻāĻžāϰā§āĻŦāύ āĻĒāϰāĻŽāĻžāĻŖā§āϰ āϏāĻāĻāϰāĻžāϝāĻŧāύ āĻšāϞ⧠āϝāĻĨāĻžāĻā§āϰāĻŽā§ \(\mathrm{sp}^{3}\) āĻ \(\mathrm{sp}^{2}\)
- āĻāĻāϝāĻŧā§āϰ āĻŦāĻŋāĻĻā§āϝā§ā§ āĻĒāϰāĻŋāĻŦāĻžāĻšāĻŋāϤāĻž āĻāĻŋāύā§āύāĨ¤
- āĻāĻāϝāĻŧā§āϰ āĻĻāĻšāύ āϤāĻžāĻĒ āĻāĻāĻāĨ¤
Ans. āĻāĻāϝāĻŧā§āϰ āĻĻāĻšāύ āϤāĻžāĻĒ āĻāĻāĻāĨ¤
- MRI āϝāύā§āϤā§āϰā§āϰ āϏāĻžāĻšāĻžāϝā§āϝ⧠āĻŽāĻžāύāĻŦāĻĻā§āĻšā§āϰ āϰā§āĻ āύāĻŋāϰā§āĻŖāϝāĻŧā§ āĻā§āύ āĻŽā§āϞāĻāĻŋāϰ
āĻā§āĻŽāĻŋāĻāĻž āϰāϝāĻŧā§āĻā§?- Neon
- Oxygen
- Hydrogen
- Silicon
Ans. Hydrogen
- āύāĻŋāĻŽā§āύā§āϰ āĻā§āύ āĻĒāϰā§āĻā§āώāĻžāĻāĻŋ āϏāĻžāϞāĻĢāĻŋāĻāϰāĻŋāĻ āĻāϏāĻŋāĻĄ āĻ āύāĻžāĻāĻā§āϰāĻŋāĻ
āĻāϏāĻŋāĻĄā§āϰ āĻŽāϧā§āϝ⧠āĻĒāĻžāϰā§āĻĨāĻā§āϝ āĻāϰāϤ⧠āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰāĻž āϝāĻžāϝāĻŧ?- āϏāĻžāϰā§āĻŦāĻāύā§āύ āύāĻŋāϰā§āĻĻā§āĻļāĻ āĻĻāĻŋāϝāĻŧā§ āĻĒāϰā§āĻā§āώāĻž
- āϏā§āĻĄāĻŋāϝāĻŧāĻžāĻŽ āĻāĻžāϰā§āĻŦāύā§āĻ āĻā§āĻāĻĄāĻŧāĻž āϝā§āĻā§āĨ¤
- āĻŽā§āϝāĻžāĻāύā§āĻļāĻŋāϝāĻŧāĻžāĻŽ āĻĢāĻŋāϤāĻž āϝā§āĻā§āĨ¤
- āĻŦā§āϰāĻŋāϝāĻŧāĻžāĻŽ āύāĻžāĻāĻā§āϰā§āĻ āĻĻā§āϰāĻŦāĻŖ āϝā§āĻā§āĨ¤
Ans. āĻŦā§āϰāĻŋāϝāĻŧāĻžāĻŽ āύāĻžāĻāĻā§āϰā§āĻ āĻĻā§āϰāĻŦāĻŖ āϝā§āĻā§āĨ¤
- āύāĻžāĻāĻā§āϰā§āĻ āĻ
ā§āϝāĻžāύāĻžāϝāĻŧāύ⧠āĻāϝāĻŧāĻāĻŋ āĻāϞā§āĻāĻā§āϰāύ āϰāϝāĻŧā§āĻā§?
- 19
- 31
- 23
- 32
Ans. 32
- 50 mL āϤāϰāϞ āĻĒāϰāĻŋāĻŽāĻžāĻĒ āĻāϰāϤ⧠āύāĻŋāĻŽā§āύā§āϰ āĻā§āύāĻāĻŋāϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āϝāĻĨāĻžāϰā§āĻĨ?
- āĻĒāĻŋāĻĒā§āĻ
- āĻŽāĻžāĻĒāύ āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰ
- āĻŦā§āϰā§āĻ
- āĻāϝāĻŧāϤāύāĻŋāĻ āĻĢā§āϞāĻžāĻā§āϏ
Ans. āĻŽāĻžāĻĒāύ āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰ
-
0.98g \(\mathrm{H}_{2} \mathrm{SO}_{4}\) āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠1.0L āĻāϞā§ā§ āĻĻā§āϰāĻŦāĻŖ āϤā§āϰāĻŋ āĻāϰāĻž āĻšāϞā§āĨ¤ āĻĻā§āϰāĻŦāĻŖāĻāĻŋāϰ āĻāύāĻŽāĻžāϤā§āϰāĻž āĻāϤ?
- 0.1 M
- 0.1 m
- 0.01 M
- 0.01 m
Ans. 0.01 M
- \(\mathrm{BaMnF}_{4}\) āĻāĻŦāĻ \(\mathrm{Li}_{2} \mathrm{MgFeF}_{6}\) āϝā§āĻāĻĻā§āĻŦāϝāĻŧā§ Mn āĻ Fe āĻāϰ āĻāĻžāϰāĻŖ
āϏāĻāĻā§āϝāĻž āϝāĻĨāĻžāĻā§āϰāĻŽā§-- +2,+2
- +5,+2
- +4,+3
- +5,+3
Ans. +2,+2
-
āĻā§āύāĻāĻŋ āĻ
āĻŽā§āϞā§ā§ āĻāϞā§āϝāĻŧ āĻĻā§āϰāĻŦāĻŖ āϤā§āϰāĻŋ āĻāϰā§?
- \(\mathrm{Na}_{2} \mathrm{O}\)
- \(\mathrm{ZnO}\)
- \(\mathrm{Al}_{2} \mathrm{O}_{3}\)
- \(\mathrm{CO}_{2}\)
Ans. \(\mathrm{CO}_{2}\)
āĻāĻā§āĻāϤāϰ āĻāĻŖāĻŋāϤ
-
\(A=\left(\begin{array}{ll}3 & -4 \\ 2 & -3\end{array}\right)\) āĻšāϞā§, \(\operatorname{det}\left(2 \mathrm{~A}^{-1}\right)\) āĻāϰ āĻŽāĻžāύ āĻšāϞ⧠–
- \(\frac{1}{4}\)
- \(-4\)
- \(4\)
- \(-\frac{1}{4}\)
Ans. \(-4\)
- āϝāĻĻāĻŋ \(f(x)=x^{2}-2|x|\) āĻāĻŦāĻ \(g(x)=x^{2}+1\) āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧠\(g(f(-2))\)
āĻāϰ āĻŽāĻžāύ āĻāϤ?- 0
- 1
- -1
- 5
Ans. 1
- \(\frac{1+i}{1-i}\) āĻāϰ āĻĒāϰāĻŽ āĻŽāĻžāύ āĻšāϞā§-
- 0
- 1
- \(\sqrt{2}\)
- i
Ans. 1
-
\(\underset {x \rightarrow -\infty} {\overset { } {\mathrm lim} } \frac{\sqrt{x^{2}+2 x}}{-x}\) āĻāϰ āĻŽāĻžāύ āĻšāϞā§-
- 1
- \(\infty\)
- \(-\infty\)
- -1
Ans. -1
- (4, 3) āĻā§āύā§āĻĻā§āϰāĻŦāĻŋāĻļāĻŋāώā§āĻ āĻāĻŦāĻ 5x – 12y + 3 = 0 āϏāϰāϞāϰā§āĻāĻžāĻā§
āϏā§āĻĒāϰā§āĻļ āĻāϰ⧠āĻāĻŽāύ āĻŦā§āϤā§āϤā§āϰ āϏāĻŽā§āĻāϰāĻŖ āĻā§āύāĻāĻŋ?- \(x^{2}+y^{2}+8 x-6 y+24=0\)
- \(x^{2}+y^{2}-8 x-6 y+24=0\)
- \(x^{2}+y^{2}+8 x+6 y+24=0\)
- \(x^{2}+y^{2}-8 x-6 y-24=0\)
Ans. \(x^{2}+y^{2}-8 x-6 y+24=0\)
- \(\overrightarrow{\mathbf{b}}=6 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-6 \hat{k}\) āĻā§āĻā§āĻāϰ āĻŦāϰāĻžāĻŦāϰ \(\overrightarrow{\mathbf{a}}=\mathbf{2} \hat{\mathbf{i}}-\mathbf{2} \hat{\mathbf{j}}+\hat{\mathbf{k}}\) āĻā§āĻā§āĻāϰā§āϰ
āĻāĻĒāĻžāĻāĻļ āĻšāϞā§-- \(\frac{8}{121} \overrightarrow{\mathrm{b}}\)
- \(\frac{-8}{121} \overrightarrow{\mathrm{b}}\)
- \(\frac{8}{121} \overrightarrow{\mathrm{a}}\)
- \(\frac{-8}{121} \vec{a}\)
Ans. \(\frac{-8}{121} \overrightarrow{\mathrm{b}}\)
- ‘GEOMETRY’ āĻļāĻŦā§āĻĻāĻāĻŋāϰ āĻŦāϰā§āĻŖāĻā§āϞā§āϰ āϏāĻŦāĻā§āϞ⧠āĻāĻāϤā§āϰ⧠āύāĻŋāϝāĻŧā§āĨ¤
āĻāϤ āĻĒā§āϰāĻāĻžāϰ⧠āϏāĻžāĻāĻžāύ⧠āϝāĻžāϝāĻŧ āϝā§āύ āĻĒā§āϰāĻĨāĻŽ āĻ āĻļā§āώ āĻ āĻā§āώāϰ ‘E’ āĻĨāĻžāĻā§?- 360
- 20160
- 720
- 30
Ans. 720
- \(\left(2 x+\frac{1}{8 x}\right)^{8}\) āĻāϰ āĻŦāĻŋāϏā§āϤā§āϤāĻŋāϤ⧠x āĻŦāϰā§āĻāĻŋāϤ āĻĒāĻĻā§āϰ āĻŽāĻžāύ āĻšāϞā§-
- \(\frac{70}{81}\)
- 520
- \(\frac{35}{128}\)
- \(\frac{7}{512}\)
Ans. \(\frac{35}{128}\)
- \(25 x^{2}+16 y^{2}=400\) āĻāĻĒāĻŦā§āϤā§āϤā§āϰ āĻā§āĻā§āύā§āĻĻā§āϰāĻŋāĻāϤāĻž āĻāϤ?
- \(\frac{2}{3}\)
- \(\frac{4}{5}\)
- \(\frac{3}{4}\)
- \(\frac{3}{5}\)
Ans. \(\frac{3}{5}\)
- \(\cot \left(\sin ^{-1} \frac{1}{2}\right)=?\)
- \(\frac{1}{\sqrt{3}}\)
- \(\frac{\sqrt{3}}{2}\)
- \(\sqrt{3}\)
- \(\frac{2}{\sqrt{3}}\)
Ans. \(\sqrt{3}\)
- [0, 2] āĻŦā§āϝāĻŦāϧāĻŋāϤ⧠\(y=x-1\) āĻāĻŦāĻ \(\mathbf{y}=\mathbf{0}\) āϰā§āĻāĻž āĻĻā§āĻŦāĻžāϰāĻž āĻāĻŦāĻĻā§āϧ
āĻ āĻā§āĻāϞā§āϰ āĻŽā§āĻ āĻā§āώā§āϤā§āϰāĻĢāϞ āĻāϤ?- \(\int_{0}^{2}(x-1) d x\)
- \(\int_{0}^{2}|x-1| d x\)
- \(2 \int_{1}^{2}(1-x) d x\)
- \(2 \int_{0}^{1}(x-1) d x\)
Ans. \(2 \int_{0}^{1}(x-1) d x\)
-
\(\frac{1}{|3 x-1|}>1\) āĻāϰ āϏāĻŽāĻžāϧāĻžāύ āĻšāϞā§-
- \(\left(-\infty, \frac{1}{3}\right) \cup(1, \infty)\)
- \(x>\frac{1}{3}\)
- \(0< x<\frac{2}{3}\)
- \(\left(0, \frac{1}{3}\right) \cup\left(\frac{1}{3}, \frac{2}{3}\right)\)
Ans. \(\left(0, \frac{1}{3}\right) \cup\left(\frac{1}{3}, \frac{2}{3}\right)\)
-
\(\int \frac{d x}{\left(e^{x}+e^{-x}\right)^{2}}=?\)
- \(\frac{1}{2\left(\mathrm{e}^{2 \mathrm{x}}+1\right)}+\mathrm{c}\)
- \(\frac{-1}{2\left(\mathrm{e}^{2 \mathrm{x}}+1\right)}+\mathrm{c}\)
- \(\frac{1}{2 e^{2 x}}+c\)
- \(\frac{-1}{2 e^{2 x}}+c\)
Ans. \(\frac{-1}{2\left(\mathrm{e}^{2 \mathrm{x}}+1\right)}+\mathrm{c}\)
- \(f(x)=\sqrt{2-\sqrt{2-x}}\) āĻāϰ āĻĄā§āĻŽā§āĻāύ āĻšāϞā§-
- \((-\infty, 2)\)
- \((-\infty, \infty)\)
- \((-2, \infty)\)
- \([-2,2]\)
Ans. \([-2,2]\)
- āĻā§āύ⧠āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āϰāĻŋāϝāĻŧāĻžāϰāϤ \(\overrightarrow{\mathbf{p}}\) āĻ \(2 \overrightarrow{\mathbf{p}}\) āĻŦāϞāĻĻā§āĻŦāϝāĻŧā§āϰ āϞāĻŦā§āϧāĻŋ \(\sqrt{7} \overrightarrow{\mathbf{p}}\)
āĻšāϞā§, āϤāĻžāĻĻā§āϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻā§āĻŖ āĻāϤ?- 30°
- 90°
- 60°
- 180°
Ans. 60°
āĻā§āĻŦāĻŦāĻŋāĻā§āĻāĻžāύ
- āĻĒāύāĻŋāϰ āϤā§āϰāĻŋāϤ⧠āĻŦā§āϝāĻŦāĻšā§āϤ āĻāύāĻāĻžāĻāĻŽā§āϰ āύāĻžāĻŽ-
- āĻĒā§āĻĒā§āĻāύ
- āϰā§āύāĻŋāύ
- āĻā§āϝāĻžāĻāĻžāϞā§āĻ
- āĻĒā§āĻāĻāĻŋāύ
Ans. āϰā§āύāĻŋāύ
- āĻļāĻŋāĻāĻžāĻā§āώ āϝ⧠āĻĒāϰā§āĻŦā§āϰ āĻŦā§āĻļāĻŋāώā§āĻā§āϝ?
- āĻāĻĨā§āϰā§āĻĒā§āĻĄāĻž
- āĻ ā§āϝāĻžāύāĻŋāϞāĻŋāĻĄāĻž
- āĻŽāϞāĻžāϏā§āĻāĻž
- āĻĒā§āϞāĻžāĻāĻŋāĻšā§āϞāĻŽāĻŋāύāĻĨā§āϏ
Ans. āĻĒā§āϞāĻžāĻāĻŋāĻšā§āϞāĻŽāĻŋāύāĻĨā§āϏ
- āĻŽāĻžāύāĻŦāĻĻā§āĻšā§ āĻāĻŽāĻŋāĻāύā§āĻā§āϞā§āĻŦāĻŋāύā§āϰ āĻāϤ āĻāĻžāĻ IgG?
- 75%
- 15%
- 10%
- 5%
Ans. 75%
- āĻā§āύāĻāĻŋ āĻĒāϤā§āϰāĻāϰāĻž āĻāĻĻā§āĻāĻŋāĻĻ?
- Pongamia pinnat
- Heritiera fomes
- Shorea robusta
- Ceriops decandra
Ans. Shorea robusta
- āĻā§āύ āĻšāϰāĻŽā§āύā§āϰ āĻā§āϏ āĻĒāĻŋāĻā§āĻāĻāĻžāϰāĻŋ āĻā§āϰāύā§āĻĨāĻŋ āύāϝāĻŧ?
- āĻā§āϝāĻžāϏā§āĻĒā§āϰā§āϏāĻŋāύ
- āĻĒā§āϰā§āĻā§āϏā§āĻā§āϰāύ
- āĻĒā§āϰā§āϞāĻžāĻā§āĻāĻŋāύ
- āĻ āĻā§āϏāĻŋāĻāϏāĻŋāύ
Ans. āĻĒā§āϰā§āĻā§āϏā§āĻā§āϰāύ
- āĻŽāĻžāύāĻŦ āĻāĻŋāύā§āĻŽā§ āĻā§āώāĻžāϰāĻ-āϝā§āĻāϞā§āϰ āϏāĻāĻā§āϝāĻž-
- ā§Š āĻŽāĻŋāϞāĻŋāϝāĻŧāύ
- ā§Šā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ
- ā§Šā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ
- ā§Šā§Ļā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ
Ans. ā§Šā§Ļā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ
- āĻā§āύ āĻ
ā§āϝāĻžāĻŽāĻžāĻāύ⧠āĻāϏāĻŋāĻĄā§āϰ āĻāύā§āϝ ā§ĒāĻāĻŋ āĻā§āĻĄ āϰāϝāĻŧā§āĻā§?
- āϞāĻŋāĻāϏāĻŋāύ
- āĻāϰāĻāĻŋāύāĻŋāύ
- āĻā§āϝāĻžāϞāĻŋāύ
- āĻā§āϰāĻŋāĻĒāĻā§āĻĢā§āύ
Ans. āĻā§āϝāĻžāϞāĻŋāύ
- āĻā§āύ āĻāĻĻā§āĻāĻŋāĻĻāĻāĻŋ āĻŦāĻžāĻāϞāĻžāĻĻā§āĻļā§ āĻŦāĻŋāϞā§āĻĒā§āϤāĻĒā§āϰāĻžāϝāĻŧ?
- Pteris vittata
- Podocarpus nerifolia
- Cycas revoluta
- Nerium indicum
Ans. Podocarpus nerifolia
- āĻā§āύ āĻ
āĻā§āĻāĻžāĻŖā§āϤ⧠āĻ
āĻā§āϏāĻŋāϏā§āĻŽ āĻĻā§āĻāĻž āϝāĻžāϝāĻŧ?
- āĻŽāĻžāĻāĻā§āĻāύā§āĻĄā§āϰāĻŋāϝāĻŧāĻž
- āύāĻŋāĻāĻā§āϞāĻŋāϝāĻŧāĻžāϏ
- āϰāĻžāĻāĻŦā§āϏā§āĻŽ
- āϞāĻžāĻāϏā§āϏā§āĻŽ
Ans. āĻŽāĻžāĻāĻā§āĻāύā§āĻĄā§āϰāĻŋāϝāĻŧāĻž
- Poaceae āĻā§āϤā§āϰā§āϰ āĻāĻĻā§āĻāĻŋāĻĻā§āϰ āĻĢāϞāĻā§ āĻŦāϞāĻž āĻšāϝāĻŧ-
- āĻŦā§āϰāĻŋ
- āĻā§āϝāĻžāϰāĻŋāĻāĻĒāϏāĻŋāϏ
- āĻĒāĻĄ
- āĻā§āϝāĻžāĻĒāϏā§āϞ
Ans. āĻā§āϝāĻžāϰāĻŋāĻāĻĒāϏāĻŋāϏ
- āĻŽāĻžāύā§āώā§āϰ āĻŽāϏā§āϤāĻŋāώā§āĻ āĻ āϏā§āώā§āĻŽā§āύāĻžāĻāĻžāĻŖā§āĻĄā§āϰ āĻāĻŦāϰāĻŖ āĻā§āύāĻāĻŋ?
- āĻŽā§āύāĻŋāύāĻā§āϏ
- āĻĒā§āϰāĻŋāĻā§āύāĻŋāϝāĻŧāĻžāĻŽ
- āĻĒā§āϰāĻŋāĻāĻžāϰāĻĄāĻŋāϝāĻŧāĻžāĻŽ
- āύāĻŋāĻāϰā§āĻāĻžāϰāĻĄāĻŋāϝāĻŧāĻžāĻŽ
Ans. āĻŽā§āύāĻŋāύāĻā§āϏ
- āĻā§āύ āĻĒā§āϰāĻžāĻŖā§āϤ⧠āĻĒā§āϞā§āϝāĻžāĻāϝāĻŧā§āĻĄ āĻāĻāĻļ āϰāϝāĻŧā§āĻā§?
- āĻšāĻžāĻāϰ
- āϤāĻžāϰāĻžāĻŽāĻžāĻ
- āĻāĻāĻŽāĻžāĻ
- āĻāĻžāϤāϞ āĻŽāĻžāĻ
Ans. āĻšāĻžāĻāϰ
- āĻ
ā§āϝāĻžāĻĄā§āϰā§āύāĻžāϞ āĻā§āϰāύā§āĻĨāĻŋ āĻĨā§āĻā§ āĻā§āύ āĻšāϰāĻŽā§āύ āύāĻŋāĻāϏā§āϤ āĻšāϝāĻŧ?
- āĻā§āĻā§āĻāϰāĻāĻŋāĻāϝāĻŧā§āĻĄ
- āĻā§āύāĻžāĻĄā§āĻā§āϰāĻĒāĻŋāύ
- āĻĒā§āϝāĻžāϰāĻžāĻĨāϰāĻŽā§āύ
- āĻā§āϝāĻžāϞāϏāĻŋāĻāύāĻŋāύ
Ans. āĻā§āĻā§āĻāϰāĻāĻŋāĻāϝāĻŧā§āĻĄ
- āĻā§āύāĻāĻŋāϰ āĻĒāϰāĻŋāĻŦāĻšāύāϤāύā§āϤā§āϰ āĻāĻā§, āĻāĻŋāύā§āϤ⧠āĻĢā§āϞ āĻšāϝāĻŧ āύāĻž?
- āĻĨā§āϝāĻžāϞā§āĻĢāĻžāĻāĻāĻž
- āĻŦā§āϰāĻžā§ā§āĻĢāĻžāĻāĻāĻž
- āĻā§āϰāĻŋāĻĄā§āĻĢāĻžāĻāĻāĻž
- āϏā§āĻĒāĻžāϰāĻŽāĻžāĻā§āĻĢāĻžāĻāĻāĻž
Ans. āĻā§āϰāĻŋāĻĄā§āĻĢāĻžāĻāĻāĻžāĨ¤
- āĻĒāϞāĻŋāĻāĻŋāύ āĻāϰ āĻĒā§āϰāĻāĻžāĻŦ-
- āϏāĻŽāĻĒā§āϰāĻāĻ
- āĻĒā§āϰāĻāĻ
- āĻĒā§āϰāĻā§āĻāύā§āύ
- āĻĒā§āĻā§āĻā§āĻā§āϤ
Ans. āĻĒā§āĻā§āĻā§āĻā§āϤ
āĻŦāĻžāĻāϞāĻž
-
âāĻāĻāĻŦâ āĻļāĻŦā§āĻĻāĻāĻŋ āĻā§āύ āĻŦāĻŋāĻĻā§āĻļāĻŋ āĻļāĻŦā§āĻĻ?
- āĻāϰāĻŦāĻŋ
- āĻĢāϰāĻžāϏāĻŋ
- āĻšāĻŋāύā§āĻĻāĻŋ
- āĻāϰā§āĻĻā§
Ans. āĻāϰāĻŦāĻŋ
- āĻŖ-āϤā§āĻŦ āĻŦāĻŋāϧāĻžāύ āĻ
āύā§āϝāĻžāϝāĻŧā§ āĻā§āύāĻāĻŋ āĻ
āĻļā§āĻĻā§āϧ?
- āĻĻā§āϰā§āĻŖā§āϤāĻŋ
- āĻĻāĻžāϰā§āĻŖ
- āĻŽā§āϞā§āϝāĻžāϝāĻŧāύ
- āĻŦāϰā§āĻŖ
Ans. āĻĻā§āϰā§āĻŖā§āϤāĻŋ
- ‘āĻŽāĻžāϏāĻŋ-āĻĒāĻŋāϏāĻŋ’ āĻāϞā§āĻĒā§ āĻāĻšā§āϞāĻžāĻĻāĻŋāϰ āĻŽā§āĻā§ āĻā§ āĻĻā§āĻāϤ⧠āĻĒāĻžāϝāĻŧ āύāĻŋāĻ āĻŽā§āϝāĻŧā§āϰ āĻŽā§āĻā§āϰ āĻāĻžāĻĒ?
- āĻā§āϞā§āĻļ
- āĻāĻā§
- āϰāĻšāĻŽāĻžāύ
- āĻāĻžāύāĻžāĻ
Ans. āϰāĻšāĻŽāĻžāύ
-
‘āĻŦāĻŋāĻā§āώāĻŖā§āϰ āĻĒā§āϰāϤāĻŋ āĻŽā§āĻāύāĻžāĻĻ’ āĻāĻŦāĻŋāϤāĻžāϝāĻŧ āĻāĻžāĻā§ āĻŦāĻžāϏāĻŦāϤā§āϰāĻžāϏ āĻŦāϞāĻž
āĻšāϝāĻŧā§āĻā§?- āĻŦāĻŋāĻā§āώāĻŖāĻā§
- āϰāĻžāĻŽāĻā§
- āϰāĻžāĻŦāĻŖāĻā§
- āĻŽā§āĻāύāĻžāĻĻāĻā§
Ans. āĻŽā§āĻāύāĻžāĻĻāĻā§
- ‘āϏāĻŽā§āĻĻā§āϰ’ āĻļāĻŦā§āĻĻāĻāĻŋāϰ āĻĒā§āϰāϤāĻŋāĻļāĻŦā§āĻĻ-
- āϰāϤā§āύāĻžāĻāϰ
- āĻ āĻŽā§āĻŦā§āĻ
- āĻāϞāĻĻ
- āĻŦāϰā§āĻŖ
Ans. āϰāϤā§āύāĻžāĻāϰāĨ¤
- ‘āύā§āϝāĻŧāĻžāϝāĻŧāĻŋāĻ’ āĻāĻžāĻā§ āĻŦāϞāĻž āĻšāϝāĻŧ?
- āύā§āϤāĻŋāĻŦāĻžāύāĻā§
- āϝāĻŋāύāĻŋ āύā§āϝāĻžāϝāĻŧāĻļāĻžāϏā§āϤā§āϰ āĻāĻžāύā§āύ
- āĻĒāĻŖā§āĻĄāĻŋāϤāĻā§
- āϤāĻžāϰā§āĻāĻŋāĻāĻā§
Ans. āϝāĻŋāύāĻŋ āύā§āϝāĻžāϝāĻŧāĻļāĻžāϏā§āϤā§āϰ āĻāĻžāύā§āύ
- āĻā§āύ āĻļāĻŦā§āĻĻāĻā§āĻā§āĻ āĻļā§āĻĻā§āϧ?
- āϏāĻŽā§āĻā§āύ, āĻāĻŖā§āĻ , āĻŽāĻžāώā§āĻāĻžāϰ
- āĻ āĻā§āĻā§āϞāĻŋ, āĻĻāύā§āĻĄāύā§āϝāĻŧ, āĻāĻŋāĻāĻāϰā§āϤāĻŦā§āϝāĻŦāĻŋāĻŽā§āĻĸāĻŧ
- āĻĒā§āϰāϤāĻŋāϝā§āĻāĻŋāϤāĻž, āϏā§āĻŦāĻžāĻĻā§āĻļā§āĻ, āϏāύā§āϤāϰāĻŖ
- āϏāĻšāϝā§āĻā§, āĻļāĻŋāϰāĻā§āĻā§āĻĻ, āĻā§āĻā§āĻāϰāύ
Ans. āϏāĻšāϝā§āĻā§, āĻļāĻŋāϰāĻā§āĻā§āĻĻ, āĻā§āĻā§āĻāϰāύ
- âāĻŦā§āĻļāĻŋāώā§āĻā§āϝâ āĻļāĻŦā§āĻĻāĻāĻŋ āĻāĻ āĻŋāϤ āĻšāϝāĻŧā§āĻā§-
- āϏāύā§āϧāĻŋāϝā§āĻā§
- āϏāĻŽāĻžāϏāϝā§āĻā§
- āĻĒā§āϰāϤā§āϝāϝāĻŧāϝā§āĻā§
- āĻāĻĒāϏāϰā§āĻāϝā§āĻā§
Ans. āĻĒā§āϰāϤā§āϝāϝāĻŧāϝā§āĻā§
- âāĻāĻ āĻžāϰ⧠āĻŦāĻāϰ āĻŦāϝāĻŧāϏâ āĻāĻŦāĻŋāϤāĻžāϰ āĻŽā§āϞāϏā§āϰ?
- āύā§āϤāĻŋāĻāϤāĻž
- āĻŦāĻŋāĻŦā§āĻāĻŦā§āϧ
- āĻ āĻĻāĻŽā§āϝ āϤāĻžāϰā§āĻŖā§āϝāĻļāĻā§āϤāĻŋ
- āĻā§āϰā§āϤāĻž
Ans. āĻ āĻĻāĻŽā§āϝ āϤāĻžāϰā§āĻŖā§āϝāĻļāĻā§āϤāĻŋ
- āĻā§āύāĻāĻŋ āϧā§āĻŦāύā§āϝāĻžāϤā§āĻŽāĻ āĻļāĻŦā§āĻĻā§āϰ āĻāĻĻāĻžāĻšāϰāĻŖ?
- āĻļā§āϤ-āĻļā§āϤ
- āĻā§āĻŽ-āĻā§āĻŽ
- āĻā§āĻŦāϰāĻā§āĻŦāϰ
- āĻā§āĻĒāĻāĻžāĻĒ
Ans. āĻā§āĻĒāĻāĻžāĻĒ
- āĻā§āύ āĻāĻĒāϏāϰā§āĻāĻāĻŋ āĻāĻŋāύā§āύāĻžāϰā§āĻĨā§ āĻĒā§āϰāϝā§āĻā§āϤ?
- āĻĒā§āϰāϤāĻŋāĻĒāĻā§āώ
- āĻĒā§āϰāϤāĻŋāĻĻā§āĻŦāύā§āĻĻā§āĻŦā§
- āĻĒā§āϰāϤāĻŋāĻŦāĻŋāĻŽā§āĻŦ
- āĻĒā§āϰāϤāĻŋāĻŦāĻžāĻĻ
Ans. āĻĒā§āϰāϤāĻŋāĻŦāĻŋāĻŽā§āĻŦ
- ‘āϤā§āĻŽāĻžāϰ āĻāĻĨāĻžāĻā§āϞāĻŋ āĻāĻžāϰāĻŋ āϏā§āĻļāĻŋāϝāĻŧāĻžāϞāĻŋāϏā§āĻāĻŋāĻ’āĨ¤ āĻ āĻāĻā§āϤāĻŋ āĻāĻžāϰ
āĻāĻĻā§āĻĻā§āĻļā§ āĻāĻā§āĻāĻžāϰāĻŋāϤ āĻšāϝāĻŧā§āĻā§?- āĻāĻŽāϞāĻžāĻāĻžāύā§āϤ
- āĻŦāĻā§āĻāĻŋāĻŽāĻāύā§āĻĻā§āϰ
- āĻŽāĻžāϰā§āĻāĻžāϰ
- āĻĒā§āϰāϏāύā§āύ
Ans. āĻŽāĻžāϰā§āĻāĻžāϰ
- āĻāĻžāϰāĻŽāĻžāĻāĻā§āϞā§āϰ āĻ
āύā§āϏāύā§āϧāĻžāύ⧠āϰā§āĻļāĻŽāĻŋ āϰā§āĻŽāĻžāϞ āϤā§āϰāĻŋāϰ āĻā§āώā§āϤā§āϰ āĻšāĻŋāϏā§āĻŦā§
āĻā§āύ āĻāϞāĻžāĻāĻž āĻāĻŦāĻŋāώā§āĻā§āϤ āĻšāϝāĻŧā§āĻā§?- āĻŦā§āϰāĻā§āĻŽ
- āĻŦāϰā§āϧāĻŽāĻžāύ
- āϰāĻžāĻāĻļāĻžāĻšā§
- āĻŽā§āϰā§āĻļāĻŋāĻĻāĻžāĻŦāĻžāĻĻ
Ans. āĻŽā§āϰā§āĻļāĻŋāĻĻāĻžāĻŦāĻžāĻĻ
-
āĻā§āύāĻāĻŋ āĻ
āĻĒāĻĒā§āϰā§ā§āĻā§āϰ āĻĻā§āώā§āĻāĻžāύā§āϤ?
- āĻĒā§āύāĻāĻĒā§āύ
- āĻā§āĻāϞāĻŋāĻ
- āĻā§āϰāĻĨāĻŋāϤ
- āĻĒā§āϰā§āĻĨāĻŋāϤ
Ans. āĻā§āĻāϞāĻŋāĻ
- ‘āĻāĻŽāĻžāϰ āĻĒāĻĨ’ āĻĒā§āϰāĻŦāύā§āϧ⧠āĻĒāĻĨāĻĒā§āϰāĻĻāϰā§āĻļāĻ āĻā§?
- āϧāϰā§āĻŽ
- āϏāϤā§āϝ
- āĻĻā§āĻļ
- āύā§āϤāĻž
Ans. āϏāϤā§āϝ
āĻāĻāϰā§āĻāĻŋ
English Read the following passage and answer the questions (1-5)
‘Bacteria’ is the common name of a very large group of one-celled microscopic organism that, we believe, may be the smallest, simplest and perhaps even the very first form of cellular life that evolved on earth. That is why they are observable only under a microscope. There are three main types of bacteria, which are classified according to their shape.
The bacilli are a group of bacteria that occur in the soil and air. They are shaped like rods. If we look at them under a microscope, we find them in motion, they always seem to be rolling or tumbling under the microscope. These bacilli are largely responsible for food spoilage. There is another group of bacteria who tend to grow in chains. They are referred to as the cocci group. A common example of this type is streptococci that causes strep throat. Finally, there is the spiral shaped bacteria called. They look a little like corkscrews, and they are responsible for a number of diseases in humans. Some species of bacteria cause diseases, but mostly bacteria live harmlessly on the skin, in the mouth, and the intestines. In fact, bacteria are very helpful to researchers. Bacteria cells resemble the cells of other life forms in many ways, and may be studied to give us insights.
- Which is the topic of this passage?
- Three major types of bacteria
- How microscopic organisms are mesured
- How bacteria is used for research in genetics
- Diseases caused by bacteria
Ans. Three major types of bacteria
- A similar word for ‘tumble’is â
- order
- arrange
- organize
- spill
Ans. spill
- According to the passage, bacilli are responsible for â
- polluting air
- causing throat diseases
- spoilling food
- spoilling soil
Ans. spoilling food
- According to the text, which characteristic is common
in bacteria?- They have one cell
- They are harmful to humans
- They die quickly
- They die when exposed to air
Ans. They have one cell
- Why are bacteria used in the research study?
- Bacteria live harmlessly
- Bacteria are similar to other life forms
- Bacteria cause many diseases
- Bacteria have cell formations
Ans. Bacteria are similar to other life forms
- Nutritionists still do not understand the nutritional _____
of jackfruits.- favours
- helps
- goods
- benefits
Ans. benefits
- A synonym for ‘compassion’ is _____
- indifference
- cruelty
- yearning
- heartlessness
Ans. yearning
-
As for _____, I prefer to let people make up _____ minds.
- myself, each other’s
- me, their own
- my, theirs
- mine, one another
Ans. me, their own
- The noun of ‘excite’ is-
- excitable
- exciting
- excited
- excitement
Ans. excitement
- Kalam found it hard to get up from bed after the alarm
clock _____ at six a.m.- sent out
- threw out
- went off
- took out
Ans. went off
- Which one is the incorrect spelling?
- deportation
- depriciation
- denunciation
- denomination
Ans. depriciation
- What is the antonym of ‘latent’?
- lurking
- hidden
- obvious
- concealed
Ans. obvious
- Monir is sitting ______ the desk _____ front of the door.
- at, in
- in, on
- on, on
- at, at
Ans. at, in
- Sleeplessness causes problems with our _____ clock.
- botanical
- biological
- natural
- rhythmical
Ans. biological
- The person who has committed such an _____ crime must
be severely punished.- injurious
- unworthy
- uncharitable
- abominable
Ans. abominable
Fill in each blank with appropriate word/words
(Question 6 -15)
āϞāĻŋāĻāĻŋāϤ āĻ āĻāĻļ (ā§§ā§§.⧍ā§Ģ x ā§Ē = ā§Ēā§Ģ)
āĻĒāĻĻāĻžāϰā§āĻĨāĻŦāĻŋāĻā§āĻāĻžāύ
āĻĒā§āϰāĻļā§āύ-01. āϏāĻŽāĻŦā§āĻā§ āĻāϞāύā§āϤ 2500 kg āĻāϰā§āϰ āĻāĻāĻāĻŋ āĻāĻžāĻĄāĻŧāĻŋ āĻŽāύā§āĻĻāύā§āϰ āĻĢāϞā§
2500 m āĻĻā§āϰāϤā§āĻŦ āĻ
āϤāĻŋāĻā§āϰāĻŽ āĻāϰāĻžāϰ āĻĒāϰ āĻĨā§āĻŽā§ āĻā§āϞāĨ¤ āĻāĻžāĻĄāĻŧāĻŋāĻāĻŋ āĻĨāĻžāĻŽāĻžāύā§āϰ āĻāύā§āϝ āĻĒā§āϰāĻĻāϤā§āϤ āĻŦāϞ āĻāĻŦāĻ āĻĨāĻžāĻŽāĻžāϰ āϏāĻŽāϝāĻŧ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤
āϏāĻŽāĻžāϧāĻžāύ:
\(v^{2}=u^{2}-2 a s\) \(\Rightarrow 0=(50)^{2}-2 \times \mathrm{a} \times 2500\) \(\Rightarrow \mathrm{a}=0.5 \mathrm{~ms}^{-2}\) \(\therefore \mathrm{v}=\mathrm{u}-\mathrm{at}\) \(\Rightarrow 0=50-0.5 \times \mathrm{t}\) \(\Rightarrow \mathrm{t}=100 \mathrm{~s}\) (Ans.) \(\therefore \mathrm{F}=\mathrm{ma}=2500 \times 0.5=1250 \mathrm{~N}(\) Ans. \()\) |
\(\mathrm{u}=50 \mathrm{~ms}^{-1}\) \(\mathrm{~m}=2500 \mathrm{~kg}\) \(\mathrm{~s}=2500 \mathrm{~m}\) \(\mathrm{v}=0\) \(\mathrm{~F}=?, \mathrm{t}=?\) |
***āĻĒā§āϰāĻļā§āύāĻāĻŋāϰ āĻāĻāϰā§āĻāĻŋ āĻāĻžāϰā§āϏāύ⧠āĻāĻĻāĻŋāĻŦā§āĻ \(\mathbf{u}=\mathbf{5 0} \mathrm{ms}^{-1}\) āĻĻā§āĻāϝāĻŧāĻž āĻāĻā§āĨ¤
āĻĒā§āϰāĻļā§āύ-02. āĻāĻāĻāύ āĻā§āώā§āĻŖ āĻĻā§āώā§āĻāĻŋāϏāĻŽā§āĻĒāύā§āύ āĻŦā§āϝāĻā§āϤāĻŋāϰ āĻā§āĻā§āϰ āĻĻā§āϰ āĻŦāĻŋāύā§āĻĻā§āϰ āĻĻā§āϰāϤā§āĻŦ 50 cmāĨ¤
āĻāĻŋ āϧāϰāύā§āϰ āĻāĻŦāĻ āĻāϤ āĻā§āώāĻŽāϤāĻžāϰ āϞā§āύā§āϏ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰāϞ⧠āϤāĻžāϰ āĻā§āĻā§āϰ āĻāĻ āĻā§āϰāĻāĻŋ āĻĻā§āϰ āĻšāĻŦā§?
āϏāĻŽāĻžāϧāĻžāύ:
\(\mathrm{P}=\frac{1}{\mathrm{u}}+\frac{1}{\mathrm{~V}}\) \(\Rightarrow P=\frac{1}{\infty}+\frac{1}{(-0.5)}\) \(\Rightarrow P=-2 \mathrm{D}\) āĻāĻŦāĻ āĻ āĻŦāϤāϞ āϞā§āύā§āϏāĨ¤(Ans.) |
\(\mathrm{u}=\infty\) (āĻ
āϏā§āĻŽ) \(\mathrm{v}=-50 \mathrm{~cm}=-0.5 \mathrm{~m}\) \(\mathrm{P}=?\) |
āĻĒā§āϰāĻļā§āύ-03. āĻāĻāĻāĻŋ āĻŦāϏā§āϤ⧠āϏāϰāϞ āĻĻā§āϞ āĻāϤāĻŋāϤ⧠\(\mathbf{x}=6.0 \cos (6 \pi t+\pi) \mathrm{m}\)
āϏāĻŽā§āĻāϰāĻŖ āĻ
āύā§āϝāĻžāϝāĻŧā§ āĻĻā§āϞāĻā§āĨ¤ āĻŦāϏā§āϤā§āϰ āĻāϤāĻŋāϰ āĻāĻŽā§āĻĒāĻžāĻā§āĻ āĻāϤ? t = 2 s āϏāĻŽāϝāĻŧā§ āĻŦāϏā§āϤā§āĻāĻŋāϰ āĻŦā§āĻ āĻ āϤā§āĻŦāϰāĻŖā§āϰ āĻŽāĻžāύ āĻāϤ?
āϏāĻŽāĻžāϧāĻžāύ:
\(x=6 \cos (6 \pi t+\pi)\) āĻā§
\(\mathrm{x}=\mathrm{A} \cos (\omega \mathrm{t}+\delta)\) āĻāϰ āϏāĻžāĻĨā§ āϤā§āϞāύāĻž āĻāϰ⧠āĻĒāĻžāĻ,
\(\omega=6 \pi \Rightarrow 2 \pi \mathrm{f}=6 \pi \Rightarrow \mathrm{f}=3 \mathrm{~Hz}\) (Ans.)
āĻŦā§āĻ:
\(\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=-6 \sin (6 \pi \mathrm{t}+\pi)(6 \pi+0)\)
t=2s āϏāĻŽā§ā§ āĻŦā§āĻ, \(\mathrm{v}=-36 \pi \sin (6 \pi \mathrm{t}+\pi)\)
\(=-36 \pi \sin (12 \pi+\pi)\)
\(=0 \mathrm{~ms}^{-1}\) (Ans.)
āϤā§āĻŦāϰāĻŖ:
\(\mathrm{a}=\frac{\mathrm{d} \mathrm{v}}{\mathrm{dt}}=-36 \pi \cos (6 \pi \mathrm{t}+\pi)(6 \pi+0)\)
\(=-216 \pi^{2} \cos (6 \pi \mathrm{t}+\pi)\)
t=2s āϏāĻŽā§ā§, \(a=-216 \pi^{2} \cos (12 \pi+\pi)\)
\(=-216 \pi^{2} \mathrm{~ms}^{-2}\) (Ans.)
āĻĒā§āϰāĻļā§āύ-04. āĻāĻāĻāĻŋ āϏā§āĻĨāĻŋāϰ āĻĨā§āϰāĻŋāϝāĻŧāĻžāĻŽ āύāĻŋāĻāĻā§āϞāĻŋāϝāĻŧāĻžāϏ (A = 220, Z = 90) āĻšāϤā§
\(\mathbf{E}_{\mathbf{0}}\) āĻāϤāĻŋāĻļāĻā§āϤāĻŋāϰ āĻāĻāĻāĻŋ āĻāϞāĻĢāĻž āĻāĻŖāĻž āύāĻŋāϰā§āĻāϤ āĻšāϝāĻŧāĨ¤ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϝāĻŧ āϰā§āĻĄāĻŋāϝāĻŧāĻžāĻŽ āύāĻŋāĻāĻā§āϞāĻŋāϝāĻŧāĻžāϏā§āϰ (A = 216, Z = 88) āĻāϤāĻŋāĻļāĻā§āϤāĻŋāϰ āĻāϤ?
āϏāĻŽāĻžāϧāĻžāύ:
āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāĻāĻŋ,
\({ }_{90}^{220} \mathrm{Th} \longrightarrow{ }_{88}^{216} \mathrm{Ra}+{ }_{2}^{4} \mathrm{He}+\) āĻāϤāĻŋāĻļāĻā§āϤāĻŋ
\(E=m c^{2}\) āϏāĻŽā§āĻĒāϰā§āĻ āĻĨā§āĻā§ āĻĒāĻžāĻ,
\(\mathrm{i} . \approx 205424 \mathrm{MeV}\left({ }_{90} \mathrm{Th}^{220}\right)\)
\(\mathrm{ii} . \approx 201000 \mathrm{MeV}\left({ }_{88}^{216} \mathrm{Ra}\right)\)
iii. \(\approx 3757 \mathrm{MeV}\left({ }_{2}^{4} \mathrm{He}\right)\)
āϏā§āϤāϰāĻžāĻ, \(205424 \rightarrow 201000+3757+\) āĻāϤāĻŋāĻļāĻā§āϤāĻŋ āϝā§āĻšā§āϤ⧠āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻĻā§āĻĒāĻžāĻļā§āϰ āĻļāĻā§āϤāĻŋ āϏāĻāϰāĻā§āώāĻŖāĻļā§āϞ āύā§āϤāĻŋ āĻŽā§āύ⧠āĻāϞā§, āϏā§āϤāϰāĻžāĻ \(\approx 210 \times\) \(10^{3} \mathrm{MeV}\) āĻļāĻā§āϤāĻŋ āĻšāĻŦā§ \({ }_{88} \mathrm{R}_{\mathrm{a}}\) āύāĻŋāĻāĻā§āϞāĻŋāϝāĻŧāĻžāϏā§āϰ āĻāύā§āϝāĨ¤
āϰāϏāĻžāϝāĻŧāύ
05. \(\mathbf{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-92.38 \mathrm{~kJ}\)
āύāĻŋāĻŽā§āύ⧠āĻĒā§āϰāĻĻāϤā§āϤ āĻĒā§āϰāĻļā§āύāĻā§āϞā§āϰ āĻāϤā§āϤāϰ āĻĻāĻžāĻāĨ¤
(a) āϏāĻŽāϝāĻŧā§āϰ āϏāĻžāĻĨā§ \(\mathbf{N}_{\mathbf{2}}\) āĻ \(\mathbf{N H}_{3}\) āĻāϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖā§āϰ āĻĒāϰāĻŋāĻŦāϰā§āϤāύ āĻāĻŋāϤā§āϰ⧠āĻĻā§āĻāĻžāĻāĨ¤ āĻāĻāϝāĻŧā§āϰ āϏāĻžāĻĒā§āĻā§āώ⧠āϏāĻŽā§āĻŽā§āĻ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϰ āĻšāĻžāϰ āϞā§āĻāĨ¤
āĻāϤā§āϤāϰ : āϏāĻŽāϝāĻŧā§āϰ āϏāĻžāĻĨā§ \(\mathbf{N}_{\mathbf{2}}\) āĻ \(\mathbf{N H}_{3}\) āĻāϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖā§āϰ āĻĒāϰāĻŋāĻŦāϰā§āϤāύā§āϰ āĻāĻŋāϤā§āϰ :
\(\mathrm{N}_{2}\) āĻāϰ āϏāĻžāĻĒā§āĻā§āώ⧠āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϰ āĻšāĻžāϰ \(=\mathrm{K} \times\left[\mathrm{N}_{2}\right] \times\left[\mathrm{H}_{2}\right]^{3}\)
\(\mathrm{NH}_{3}\) āĻāϰ āϏāĻžāĻĒā§āĻā§āώ⧠āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϰ āĻšāĻžāϰ \(=\mathrm{K} \times\left[\mathrm{NH}_{3}\right]^{2}\)
(b) āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāĻāĻŋāϰ āϏāĻžāĻŽā§āϝāĻžāĻŦāϏā§āĻĨāĻžāϰ āĻāĻĒāϰ āϤāĻžāĻĒ āĻ āĻāĻžāĻĒā§āϰ āĻĒā§āϰāĻāĻžāĻŦ āĻā§ āĻšāĻŦā§?
āĻāϤā§āϤāϰ :
\(\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})\) \(\Delta \mathrm{H}=-92.38 \mathrm{KJ}\)
āϤāĻžāĻĒāĻŽāĻžāϤā§āϰāĻžāϰ āĻĒā§āϰāĻāĻžāĻŦ : āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāĻāĻŋ āϤāĻžāĻĒā§ā§āĻĒāĻžāĻĻā§āĨ¤ āϞāĻž āĻļā§āϝāĻžāϤā§āϞāĻŋāϝāĻŧāĻžāϰ āύā§āϤāĻŋ āĻ
āύā§āϏāĻžāϰ⧠āϤāĻžāĻĒāĻŽāĻžāϤā§āϰāĻž āĻŦā§āĻĻā§āϧāĻŋāϤ⧠āϏāĻŽā§āĻŽā§āĻ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϰ āĻšāĻžāϰ āĻšā§āϰāĻžāϏ āĻĒāĻžāϝāĻŧāĨ¤ āĻ
āϰā§āĻĨāĻžā§ āĻā§āĻĒāĻžāĻĻāύ āĻšā§āϰāĻžāϏ āĻĒāĻžāϝāĻŧāĨ¤
āĻāĻžāĻĒā§āϰ āĻĒā§āϰāĻāĻžāĻŦ : āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϝāĻŧ āĻāϝāĻŧāϤāύā§āϰ āĻšā§āϰāĻžāϏ āĻāĻā§ āĻŦāϞ⧠āĻāĻžāĻĒ āĻŦā§āĻĻā§āϧāĻŋāϤ⧠āϏāĻŽā§āĻŽā§āĻ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāϰ āĻšāĻžāϰ āĻŦā§āĻĻā§āϧāĻŋ āĻĒāĻžāϝāĻŧ āĻ
āϰā§āĻĨāĻžā§ āĻā§āĻĒāĻžāĻĻāύ āĻŦāĻžāĻĄāĻŧā§āĨ¤
(c) āϏāĻžāĻŽā§āϝāĻžāĻŦāϏā§āĻĨāĻž āϧā§āϰā§āĻŦāĻ (K) āĻāϰ āĻāĻĒāϰ āĻĒā§āϰāĻāĻžāĻŦāĻā§āϰ āĻā§āύ āĻĒā§āϰāĻāĻžāĻŦ
āϰāϝāĻŧā§āĻā§ āĻā§?
āĻāϤā§āϤāϰ : āϏāĻžāĻŽā§āϝāĻžāĻŦāϏā§āĻĨāĻž āϧā§āϰā§āĻŦāĻā§āϰ (K) āĻāĻĒāϰ āĻĒā§āϰāĻāĻžāĻŦāĻā§āϰ āĻā§āύ⧠āĻĒā§āϰāĻāĻžāĻŦ āύā§āĻ āĨ¤
06. (a) āĻŦā§āϰ āĻŽāĻĄā§āϞ āĻ
āύā§āϏāĻžāϰ⧠āĻšāĻžāĻāĻĄā§āϰā§āĻāύ āĻŽā§āϞā§āϰ āĻŦāĻŋāĻāĻŋāϰāĻŖ āĻŦāϰā§āĻŖāĻžāϞāĻŋāϰ
āĻā§āĻĒāϤā§āϤāĻŋ āĻāĻŋāϤā§āϰā§āϰ āϏāĻžāĻšāĻžāϝā§āϝ⧠āĻĻā§āĻāĻžāĻāĨ¤
āĻāϤā§āϤāϰ : āϝāĻāύ āĻāϞā§āĻā§āĻā§āϰāύ āύāĻŋāĻŽā§āύ āĻļāĻā§āϤāĻŋāϏā§āϤāϰ āĻšāϤ⧠āĻāĻā§āĻ āĻļāĻā§āϤāĻŋāϏā§āĻŦāϰ⧠āϞāĻžāĻĢāĻŋāϝāĻŧā§ āĻāϞ⧠āϤāĻāύ āĻāϞā§āĻ āĻļāĻā§āϤāĻŋāϰ āĻļā§āώāĻŖ āĻāĻŦāĻ āϝāĻāύ āĻāĻā§āĻ āĻļāĻā§āϤāĻŋāϏā§āϤāϰ āĻšāϤ⧠āύāĻŋāĻŽā§āύ āĻļāĻā§āϤāĻŋāϏā§āϤāϰ⧠āϞāĻžāĻĢāĻŋāϝāĻŧā§ āĻāϞā§, āϤāĻāύ āĻāϞā§āĻ āĻļāĻā§āϤāĻŋāϰ āĻŦāĻŋāĻāĻŋāϰāĻŖ āĻāĻā§āĨ¤ āϝāĻĻāĻŋ āĻĒā§āϰāĻĨāĻŽ āĻāĻā§āώāĻĒāĻĨā§ āĻāϞā§āĻā§āĻā§āϰāύā§āϰ āĻļāĻā§āϤāĻŋ \(\mathrm{E}_{1}\) āĻāĻŦāĻ āĻĻā§āĻŦāĻŋāϤā§āϝāĻŧ āĻāĻā§āώāĻĒāĻĨā§ āĻāϞā§āĻā§āĻā§āϰāύā§āϰ āĻļāĻā§āϤāĻŋ \(\mathrm{E}_{2}\) āĻšāϝāĻŧ, āϤāĻŦā§ āĻŦāĻŋāĻāĻŋāϰāĻŋāϤ āĻāϞā§āϰ āĻļāĻā§āϤāĻŋ āĻšāĻŦā§ \(\Delta \mathrm{E}=\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right)\)āĨ¤ āĻāĻ āĻļāĻā§āϤāĻŋ āϤāĻĄāĻŧāĻŋā§ āĻā§āĻŽā§āĻŦāĻā§āϝāĻŧ āĻŦāĻŋāĻāĻŋāϰāĻŖ āĻšāĻŋāϏā§āĻŦā§ āύāĻŋāϰā§āĻāϤ āĻšāĻŦā§ āĨ¤
āĻāĻŋāϤā§āϰ: āĻŦā§āϰā§āϰ āĻĒāϰāĻŽāĻžāĻŖā§ āĻŽāĻĄā§āϞ āĻ āϰā§āĻāĻž āĻŦāϰā§āĻŖāĻžāϞāĻŋāϰ āĻā§āϏāĨ¤
(b) āĻšāĻžāĻāĻĄā§āϰā§āĻā§āύ āĻŦāĻŋāĻāĻŋāϰāĻŖ āĻŦāϰā§āĻŖāĻžāϞāĻŋāϰ āĻĒāĻžāĻāĻāĻāĻŋ āĻŦāϰā§āĻŖāĻžāϞāĻŋ āϏāĻžāϰāĻŋāϰ āύāĻžāĻŽ āϞā§āĻāĨ¤
āĻāϤā§āϤāϰ :
- āϞāĻžāĻāĻŽā§āϝāĻžāύ āϏāĻŋāϰāĻŋāĻ (Lymen Series)
- āĻŦāĻžāĻŽāĻžāϰ āϏāĻŋāϰāĻŋāĻ (Balmer Series)
- āĻĒā§āϝāĻžāĻļā§āĻā§āύ āϏāĻŋāϰāĻŋāĻ (Paschen Series)
- āĻŦā§āϰāĻžāĻā§āĻ āϏāĻŋāϰāĻŋāĻ (Brackett Series)
- āĻĢā§āĻĄ āϏāĻŋāϰāĻŋāĻ (Pfund Series)
(c) āĻŦā§āϰ āĻŽāĻĄā§āϞ āĻāϰ āĻĻā§āĻāĻŋ āϏā§āĻŽāĻžāĻŦāĻĻā§āϧāϤāĻž āϞā§āĻ?
āĻāϤā§āϤāϰ :
- āĻŦā§āϰ āĻŽāĻĄā§āϞ H āĻĒāϰāĻŽāĻžāĻŖā§ āĻ āĻāĻāĻ āĻāϞā§āĻā§āĻā§āϰāύāĻŦāĻŋāĻļāĻŋāώā§āĻ āĻāϝāĻŧāύāĻā§āϞā§āϰ (āϝā§āĻŽāύ: \(\mathrm{He}^{+}, \mathrm{Li}^{2+}\)) āĻŦāϰā§āĻŖāĻžāϞāĻŋāϰ āĻŦā§āϝāĻžāĻā§āϝāĻž āĻāϰāϤ⧠āĻĒāĻžāϰāϞā§āĻ āĻāĻāĻžāϧāĻŋāĻ āĻāϞā§āĻā§āĻā§āϰāύāĻŦāĻŋāĻļāĻŋāώā§āĻ āĻĒāϰāĻŽāĻžāĻŖā§āĻā§āϞā§āϰ āĻŦāϰā§āĻŖāĻžāϞāĻŋāϰ āĻŦā§āϝāĻžāĻā§āϝāĻž āĻāϰāϤ⧠āĻĒāĻžāϰ⧠āύāĻžāĨ¤
-
āĻāĻ āĻļāĻā§āϤāĻŋāϏā§āϤāϰ āĻšāϤ⧠āĻ
āĻĒāϰ āĻļāĻā§āϤāĻŋāϏā§āϤāϰ⧠āĻāϞā§āĻā§āĻā§āϰāύā§āϰ āϏā§āĻĨāĻžāύāĻžāϏā§āϤāϰ āĻāĻāϞā§, āĻŦā§āϰ āĻĒāϰāĻŽāĻžāĻŖā§ āĻŽāĻĄā§āϞ āĻ
āύā§āϏāĻžāϰ⧠āĻāĻāĻāĻŋ āϰā§āĻāĻž āĻŦāϰā§āĻŖāĻžāϞāĻŋāϰ āϏā§āώā§āĻāĻŋ āĻšāĻāϝāĻŧāĻžāϰ āĻāĻĨāĻž āĨ¤ āĻāĻŋāύā§āϤ⧠āĻāĻā§āĻ āĻā§āώāĻŽāϤāĻžāϰ āϏā§āĻĒā§āĻāĻā§āϰā§āϏā§āĻā§āĻĒ āĻĻā§āĻŦāĻžāϰāĻž āĻĒāϰā§āĻā§āώāĻžāϝāĻŧ āĻĻā§āĻāĻž āϝāĻžāϝāĻŧ, āĻĒā§āϰāϤāĻŋāĻāĻŋ āĻŦāϰā§āĻŖāĻžāϞāĻŋ āϰā§āĻāĻž āĻāϝāĻŧā§āĻāĻāĻŋ āϏā§āĻā§āώā§āĻŽ āϰā§āĻāĻž āĻĻā§āĻŦāĻžāϰāĻž āĻāĻ āĻŋāϤāĨ¤ āĻŦā§āϰ
āĻŽāĻĄā§āϞ āĻāϏāĻŦ āϏā§āĻā§āώā§āĻŽ āϰā§āĻāĻž āĻā§āĻĒāϤā§āϤāĻŋāϰ āĻāĻžāϰāĻŖ āĻŦā§āϝāĻžāĻā§āϝāĻž āĻāϰāϤ⧠āĻĒāĻžāϰ⧠āύāĻž āĨ¤
07. (a) āĻŦā§āύāĻāĻŋāύā§āϰ āĻ
ā§āϝāĻžāϞāĻāĻžāĻāϞāĻŋāĻāϰāĻŖā§ āĻŦā§āϝāĻŦāĻšā§āϤ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāĻāĻŋāϰ āύāĻžāĻŽ
āĻāĻŋ? āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāĻāĻŋ āϞā§āĻ āĻ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻž āĻā§āĻļāϞ āĻĻā§āĻāĻžāĻāĨ¤
āĻāϤā§āϤāϰ : āĻŦā§āύāĻāĻŋāύā§āϰ āĻ
ā§āϝāĻžāϞāĻāĻžāĻāϞāĻŋāĻāϰāĻŖā§āϰ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāĻāĻŋāϰ āύāĻžāĻŽ āĻĢā§āϰāĻŋāĻĄā§āϞ āĻā§āϰāĻžāĻĢāĻ āĻ
ā§āϝāĻžāϞāĻāĻžāĻāϞā§āĻļāύ āĨ¤ āĻ āĻĒāĻĻā§āϧāϤāĻŋāϤ⧠āĻŦā§āύāĻāĻŋāύ āĻŦāϞāϝāĻŧā§ āĻ
ā§āϝāĻžāϞāĻāĻžāĻāϞ āĻŽā§āϞāĻ (āϝā§āĻŽāύ: \(\mathrm{CH}_{3}^{+}\)), āϏāϰāĻžāϏāϰāĻŋ āĻĒā§āϰāĻŦā§āĻļ āĻāϰāĻžāύ⧠āĻšāϝāĻŧāĨ¤ āĻ
āύāĻžāϰā§āĻĻā§āϰ \(\mathrm{AlCl}_{3}\) āĻāϰ āĻāĻĒāϏā§āĻĨāĻŋāϤāĻŋāϤ⧠āĻŦā§āύāĻāĻŋāύ āĻ āĻŽāĻŋāĻĨāĻžāĻāϞ āĻā§āϞā§āϰāĻžāĻāĻĄ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻž āĻāϰ⧠āĻŽāĻŋāĻĨāĻžāĻāϞ āĻā§āύāĻāĻŋāύ āĻŦāĻž āĻāϞā§āĻāύ āĻā§āĻĒāύā§āύ āĻāϰā§āĨ¤
āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻž āĻā§āĻļāϞ :
(b) 1-āĻŦāĻŋāĻāĻāĻžāύāϞ āĻāϰ āĻāĻāĻāĻŋ āĻ
āĻĒāϏāĻžāϰāĻŖ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻž āϞā§āĻāĨ¤
āĻāϤā§āϤāϰ : āĻāϞā§āĻā§āĻā§āϰā§āĻĢāĻŋāϞāĻŋāĻ āĻ
āĻĒāϏāĻžāϰāĻŖ :
\(\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4} \stackrel{\Delta}{\longrightarrow} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}\)
āĻ
ā§āϝāĻžāϞāĻāĻŋāύ
08. (a) āϤā§āϞ āĻŦāĻž āĻāϰā§āĻŦāĻŋāϰ āĻ āϏāĻžāĻŦāĻžāύā§āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻāĻā§āϤ āϞā§āĻ āĨ¤ āϤā§āϞ āĻ
āĻāϰā§āĻŦāĻŋāϰ āĻŽāϧā§āϝ⧠āĻĒāĻžāϰā§āĻĨāĻā§āϝ āĻĨāĻžāĻāϞ⧠āϤāĻž āϞā§āĻ?
āĻāϤā§āϤāϰ : āϤā§āϞ āĻŦāĻž āĻāϰā§āĻŦāĻŋāϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻāĻā§āϤ:
āϏāĻžāĻŦāĻžāύā§āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻāĻā§āϤ :
\(\mathrm{R}-\mathrm{COO}-\mathrm{Na}^{+}\)
āϤā§āϞ āĻ āĻāϰā§āĻŦāĻŋāϰ āĻŽāϧā§āϝ⧠āĻĒāĻžāĻĨāϰā§āĻ: āϤā§āϞ āĻ āĻāϰā§āĻŦāĻŋ āĻĻā§āĻā§āĻ āĻā§āϰāĻžāĻāĻā§āϞāĻŋāϏāĻžāϰāĻžāĻāĻĄāĨ¤ āĻāĻŋāύā§āϤ⧠āϤā§āϞ āĻ āĻāϰā§āĻŦāĻŋ āĻāĻ āύāĻāĻžāϰ⧠āĻĢā§āϝāĻžāĻāĻŋ āĻāϏāĻŋāĻĄā§āϰ āĻ
āϏāĻŽā§āĻĒā§āĻā§āϤ āĻāĻžāϰā§āĻŦāύā§āϰ āϏāĻāĻā§āϝāĻžāϰ āĻĒāĻžāϰā§āĻĨāĻā§āϝ āĻĨāĻžāĻā§ āĨ¤ āϤā§āϞ āĻāĻā§āώ āϤāĻžāĻĒāĻŽāĻžāϤā§āϰāĻžāϝāĻŧ āϤāϰāϞ āĻ āĻāϰā§āĻŦāĻŋ āĻāĻā§āώāϤāĻžāĻĒāĻŽāĻžāϤā§āϰāĻžāϝāĻŧ āĻāĻ āĻŋāύ āĻšāϝāĻŧāĨ¤ āϤā§āϞ āϏāĻžāϧāĻžāϰāĻŖāϤ āĻāĻĻā§āĻāĻŋāĻĻ āĻĨā§āĻā§ āĻāĻšāϰāĻŋāϤ āĻšāϝāĻŧ āĻ āĻāϰā§āĻŦāĻŋ āϏāĻžāϧāĻžāϰāĻŖāϤ āĻĒā§āϰāĻžāĻŖā§ āĻĨā§āĻā§ āĻāĻšāϰāĻŋāϤ āĻšāϝāĻŧāĨ¤
(b) āĻā§āϰā§āϏāĻŋāύ āĻ āϏāϝāĻŧāĻžāĻŦāĻŋāύ āϤā§āϞā§āϰ āĻŽāϧā§āϝ⧠āĻĒāĻžāϰā§āĻĨāĻā§āϝ āĻĨāĻžāĻāϞ⧠āϤāĻž āϞā§āĻ?
āĻāϤā§āϤāϰ : āĻ āĻĒāϰāĻŋāĻļā§āϧāĻŋāϤ āĻĒā§āĻā§āϰā§āϞāĻŋāϝāĻŧāĻžāĻŽā§āϰ āĻāĻāĻļāĻŋāĻ āĻĒāĻžāϤāύā§āϰ āϏāĻžāĻšāĻžāϝ⧠āĻā§āϰā§āϏāĻŋāύ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧāĨ¤ āĻ āϰā§āĻĨāĻžā§ āĻāĻāĻŋ āĻĒā§āĻā§āϰā§āϞāĻŋāϝāĻŧāĻžāĻŽā§āϰ āĻ āĻāĻļ āĨ¤ āĻāĻāĻžāύ⧠āĻŦāĻŋāĻāĻŋāύā§āύ āĻšāĻžāĻāĻĄā§āϰā§āĻāĻžāϰā§āĻŦāύā§āϰ āϏāĻāĻŽāĻŋāĻļā§āϰāĻŖ āĻĨāĻžāĻā§āĨ¤ āĻ āĻĒāϰāĻĻāĻŋāĻā§, āϏāϝāĻŧāĻžāĻŦāĻŋāύ āϤā§āϞ āĻāĻāĻāĻŋ āĻāĻĻā§āĻāĻŋāĻĻ āϤā§āϞ, āĻāĻāĻžāύ⧠āĻŽā§āϞāϤ āĻ āϏā§āĻĒā§āĻā§āϤ āĻšāĻžāĻāĻĄā§āϰā§āĻāĻžāϰā§āĻŦāύ āĻĨāĻžāĻā§āĨ¤
āĻāĻŖāĻŋāϤ
09. āϝāĻĻāĻŋ \(f(x)=-\sqrt{x-1}\) āĻāϰ āĻŦāĻŋāĻĒāϰā§āϤ āĻĢāĻžāĻāĻļāύ \(\mathbf{f}^{-1}(\mathbf{x})\) āĻšāϝāĻŧ āϤāĻŦā§
āĻĻā§āĻāĻžāĻ āϝā§, \(\mathbf{f}\left(\mathbf{f}^{-1}(\mathbf{x})\right)=\mathbf{f}^{-1}(\mathbf{f}(\mathbf{x}))\)
āϏāĻŽāĻžāϧāĻžāύ : \(f(x)=-\sqrt{x-1}\)
āϧāϰāĻŋ, \(f(x)=y \Rightarrow x=f^{-1}(y)\)
\(\therefore y=-\sqrt{x-1} \Rightarrow y^{2}=x-1 \Rightarrow x=y^{2}+1 \Rightarrow f^{-1}(y)=y^{2}+1\)
\(\therefore \mathrm{f}^{-1}(\mathrm{x})=\mathrm{x}^{2}+1\)
\(\therefore \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{x})\right)=-\sqrt{\mathrm{x}^{2}+1-1}=\mathrm{x} ; \mathrm{x}<0\)
āĻāĻŦāĻžāϰ,\(f(x)=-\sqrt{x-1}\)
\(\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=(-\sqrt{\mathrm{x}-1})^{2}+1=\mathrm{x}-1+1=\mathrm{x}\)
\(\therefore \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{x})\right)=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))\)
[Showed]
10. \(1+\frac{3}{1 !}+\frac{5}{2 !}+\frac{7}{3 !}+\ldots \ldots\) āϧāĻžāϰāĻžāĻāĻŋāϰ āϝā§āĻāĻĢāϞ āĻŦā§āϰ āĻāϰāĨ¤
āϏāĻŽāĻžāϧāĻžāύ : \(1+\frac{3}{1 !}+\frac{5}{2 !}+\frac{7}{3 !}+\ldots .\)
āϧāϰāĻŋ,
\(U_{r}=\frac{2 r-1}{(r-1) !}=\frac{2 r-2+1}{(r-1) !}\)
\(=\frac{2(r-1)}{(r-1) !}+\frac{1}{(r-1) !}=\frac{2}{(r-2) !}+\frac{1}{(r-1) !}\)
\(\therefore \mathrm{S}_{\mathrm{n}}=\sum \mathrm{U}_{\mathrm{r}}=2 \sum \frac{1}{(\mathrm{r}-2) !}+\sum \frac{1}{(\mathrm{r}-1) !}=2 \mathrm{e}+\mathrm{e}=3 \mathrm{e}\)
11. x = 2, x = 4, y = 4 āĻāĻŦāĻ y = 6 āϰā§āĻāĻž āĻĻā§āĻŦāĻžāϰāĻž āĻāĻ āĻŋāϤ āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ
āĻāϰā§āĻŖāĻĻā§āĻŦāϝāĻŧā§āϰ āϏāĻŽā§āĻāϰāĻŖ āĻŦā§āϰ āĻāϰāĨ¤
āϏāĻŽāĻžāϧāĻžāύ :
AC āĻāϰā§āĻŖā§āϰ āϏāĻŽā§āĻāϰāĻŖ,
\(\frac{x-2}{2-4}=\frac{y-4}{4-6}\)
\(\Rightarrow \frac{x-2}{-2}=\frac{y-4}{-2}\)
\(\Rightarrow x-y+2=0\) (Ans).
BD āĻāϰā§āĻŖā§āϰ āϏāĻŽā§āĻāϰāĻŖ,
\(\frac{x-4}{4-2}=\frac{y-4}{4-6} \Rightarrow \frac{x-4}{2}=\frac{y-4}{-2} \Rightarrow x+y-8=0\) (Ans)
12. āϏāĻŽāĻžāϧāĻžāύ āĻāϰ: \(\sin \theta+\sin 2 \theta+\sin 3 \theta=1+\cos \theta+\cos 2 \theta\)
āϏāĻŽāĻžāϧāĻžāύ:
\(\sin \theta+\sin 2 \theta+\sin 3 \theta=1+\cos \theta+\cos 2 \theta\)
\(\Rightarrow \sin 3 \theta+\sin \theta+\sin 2 \theta=1+\cos 2 \theta+\cos \theta\)
\(\Rightarrow 2 \sin \frac{3 \theta+\theta}{2} \cos \frac{3 \theta-\theta}{2}+\sin 2 \theta=2 \cos ^{2} \theta+\cos \theta\)
\(\Rightarrow 2 \sin 2 \theta \cos \theta+\sin 2 \theta=2 \cos ^{2} \theta+\cos \theta\)
\(\Rightarrow \sin 2 \theta(2 \cos \theta+1)=\cos \theta(2 \cos \theta+1)\)
\(\Rightarrow \sin 2 \theta(2 \cos \theta+1)-\cos \theta(2 \cos \theta+1)=0\)
\(\Rightarrow(2 \cos \theta+1)(\sin 2 \theta-\cos \theta)=0\)
āĻšā§, \(2 \cos \theta+1=0 \Rightarrow 2 \cos \theta=-1\)
\(\Rightarrow \cos \theta=-\frac{1}{2}=\cos \frac{2 \pi}{3} \Rightarrow \theta=2 n \pi \pm \frac{2 \pi}{3}\)
āĻ
āĻĨāĻŦāĻž, \(\sin 2 \theta-\cos \theta=0 \Rightarrow 2 \sin \theta \cos \theta-\cos \theta=0\)
\(\Rightarrow \cos \theta(2 \sin \theta-1)=0 \therefore \cos \theta=0 \Rightarrow \theta=(2 \mathrm{n}+1) \frac{\pi}{2}\)
āĻ
āĻĨāĻŦāĻž, \(2 \sin \theta-1=0 \Rightarrow 2 \sin \theta=1 \Rightarrow \sin \theta=\frac{1}{2}=\sin \frac{\pi}{6}\)
\(\theta=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}\)
\(\theta=n \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}\)
\(\therefore\) āύāĻŋāϰā§āĻŖā§āϝāĻŧ āϏāĻŽāĻžāϧāĻžāύ: \(\theta=2 n \pi \pm \frac{2 \pi}{3},(2 n+1) \frac{\pi}{2}, n \pi+(-1)^{n} \frac{\pi}{6}\) āϝāĻāύ \(n \in z\)
13. āϏāĻžāϞā§āĻāϏāĻāĻļā§āϞā§āώāĻŖā§āϰ āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻžāĻāĻŋ āϞāĻŋāĻ āĻāĻŦāĻ
āϏāĻžāϞā§āĻāϏāĻāĻļā§āϞā§āώāĻŖā§āϰ āĻĻā§āĻāĻāĻŋ āĻā§āϰā§āϤā§āĻŦāĻĒā§āϰā§āĻŖ āĻāĻžāĻ āĻāϞā§āϞā§āĻ āĻāϰāĨ¤
āĻāϤā§āϤāϰ: āϏāĻžāϞā§āĻāϏāĻāĻļā§āϞā§āώāĻŖā§āϰ āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻž:
āϏāĻžāϞā§āĻāϏāĻāĻļā§āϞā§āώāĻŖā§āϰ āĻĻā§āĻāĻŋ āĻā§āϰā§āϤā§āĻŦāĻĒā§āϰā§āĻŖ āĻāĻžāĻ āύāĻŋāĻā§ āĻāϞā§āϞā§āĻ āĻāϰāĻž āĻšāϞ
-
āĻļāĻā§āϤāĻŋāϰ āĻā§āϏ: āĻā§āĻŦāĻāĻāϤā§āϰ āĻļāĻā§āϤāĻŋāϰ āĻāĻāĻŽāĻžāϤā§āϰ āĻā§āϏ āĻšāϞāĨ¤
āϏāĻžāϞā§āĻāϏāĻāĻļā§āϞā§āώāĻŖ āĻĒā§āϰāĻā§āϰāĻŋāϝāĻŧāĻžāĨ¤ āĻāĻžāĻĻā§āϝā§āϰ āĻŽāϧā§āϝ⧠āĻ āĻļāĻā§āϤāĻŋ āĻāϏ⧠āϏā§āϰā§āϝ
āĻšāϤā§āĨ¤ āϏā§āϰā§āϝā§āϰ āĻ āĻļāĻā§āϤāĻŋ āϏāĻžāϞā§āĻāϏāĻāĻļā§āϞā§āώāĻŖ āĻĒā§āϰāĻā§āϰāĻŋāϝāĻŧāĻžāϝāĻŧ āĻāĻžāĻĻā§āϝ⧠āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ āĻļāĻā§āϤāĻŋ āĻšāĻŋāϏā§āĻŦā§ āϏāĻā§āĻāĻŋāϤ āĻĨāĻžāĻā§āĨ¤ āĻāĻžāĻā§āĻ āĻā§āĻŦā§āϰ āϏāĻāϞ āĻļāĻā§āϤāĻŋāϰ āĻā§āϏ āĻ āĻĒā§āϰāĻā§āϰāĻŋāϝāĻŧāĻžāĨ¤ -
āĻĒāϰāĻŋāĻŦā§āĻļ āĻĒāϰāĻŋāĻļā§āϧāύ: āϏāĻžāϞā§āĻāϏāĻāĻļā§āϞā§āώāĻŖ āĻĒā§āϰāĻā§āϰāĻŋāϝāĻŧāĻžāϝāĻŧ CO,
āĻļā§āώāĻŋāϤ āĻšāϝāĻŧ āĻāĻŦāĻ 0, āĻā§āĻĒāύā§āύ āĻšāϝāĻŧāĨ¤ āĻĒā§āϰāĻžāĻŖāĻŋāĻā§āϞā§āϰ āĻāύā§āϝ āĻā§āώāϤāĻŋāĻāĻžāϰāĻ CO, āĻļā§āώāĻŖ āĻāϰ⧠āĻāĻŦāĻ āϏāĻāϞ āĻā§āĻŦā§āϰ āĻļā§āĻŦāϏāύā§āϰ āĻāύā§āϝ N, āϏāϰāĻŦāϰāĻžāĻš āĻāϰ⧠āĻ āĻĒā§āϰāĻā§āϰāĻŋāϝāĻŧāĻž āĻĒāϰāĻŋāĻŦā§āĻļ āĻĒāϰāĻŋāĻļā§āϧāύ āĻāϰ⧠āĻĨāĻžāĻā§āĨ¤ āĻāĻāĻžāĻŦā§ āϏāĻŦā§āĻ āĻāĻĻā§āĻāĻŋāĻĻā§āϰ āĻ āĻĒā§āϰāĻā§āϰāĻŋāϝāĻŧāĻž āĻā§āĻŦāĻāĻāϤāĻā§
āύāĻŋāĻļā§āĻāĻŋāϤ āϧā§āĻŦāĻāϏā§āϰ āĻšāĻžāϤ āĻĨā§āĻā§ āϰāĻā§āώāĻž āĻāϰā§āĨ¤
14. āĻāĻāĻŦā§āĻāĻĒāϤā§āϰ⧠āĻāĻĻā§āĻāĻŋāĻĻā§āϰ āĻŽā§āϞā§āϰ āĻ
āύā§āϤāϰā§āĻāĻ āύāĻāϤ āĻļāύāĻžāĻā§āϤāĻāĻžāϰ⧠āĻāϝāĻŧāĻāĻŋ
āĻŦā§āĻļāĻŋāώā§āĻā§āϝ āϞāĻŋāĻāĨ¤
āĻāϤā§āϤāϰ: āĻāĻāĻŦā§āĻāĻĒāϤā§āϰ⧠āĻāĻĻā§āĻāĻŋāĻĻā§āϰ āĻŽā§āϞā§āϰ āĻ āύā§āϤāϰā§āĻāĻ āύāĻāϤ āĻļāύāĻžāĻā§āϤāĻāĻžāϰ⧠āĻŦā§āĻļāĻŋāώā§āĻā§āϝāϏāĻŽā§āĻš:
- āϤā§āĻŦāĻā§ āĻāĻŋāĻāĻāĻŋāĻāϞ āĻ āύā§āĻĒāϏā§āĻĨāĻŋāϤāĨ¤ āĻāϤ⧠āĻāĻāĻā§āώ⧠āϰā§āĻŽ āĻāĻā§āĨ¤
- āĻ āϧāĻāϤā§āĻŦāĻ āĻ āύā§āĻĒāϏā§āĻĨāĻŋāϤāĨ¤
- āĻĒāϰāĻŋāĻāĻā§āϰ āĻāĻāϏāĻžāϰāĻŋ āĻā§āώ āĻĻāĻŋāϝāĻŧā§ āĻāĻ āĻŋāϤāĨ¤
- āĻāĻžāϏā§āĻā§āϞāĻžāϰ āĻŦāĻžāύā§āĻĄāϞ āĻ āϰā§āϝāĻŧ āĻāĻŦāĻ āĻāĻāĻžāύā§āϤāϰāĻāĻžāĻŦā§ āϏāĻā§āĻāĻŋāϤāĨ¤
-
āĻŽā§āĻāĻžāĻāĻžāĻāϞā§āĻŽ āĻā§āύā§āĻĻā§āϰā§āϰ āĻĻāĻŋāĻā§ āĻāĻŦāĻ āĻĒā§āϰā§āĻā§āĻāĻžāĻāϞā§āĻŽ āĻĒāϰāĻŋāϧāĻŋāϰ
āĻĻāĻŋāĻā§ āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤ - āĻāĻžāĻāϞā§āĻŽ āĻŦāĻž āĻĢā§āϞā§āϝāĻŧā§āĻŽ āĻā§āĻā§āĻā§āϰ āϏāĻāĻā§āϝāĻž āĻāϝāĻŧ āĻāϰ āĻ āϧāĻŋāĻ |
15. āĻāĻŖ āĻĒāϰā§āϝāύā§āϤ āĻŽāĻžāύā§āώā§āϰ āĻļā§āϰā§āĻŖāĻŋāĻŦāĻŋāύā§āϝāĻžāϏ āĻāϰ (āĻĒāϰā§āĻŦ, āĻāĻĒ-āĻĒāϰā§āĻŦ, āĻļā§āϰā§āĻŖāĻŋ, āĻŦāϰā§āĻ, āĻā§āϤā§āϰāϏāĻš)āĨ¤
āĻāϤā§āϤāϰ: āĻŽāĻžāύā§āώā§āϰ āĻļā§āϰā§āĻŖāĻŋāĻŦāĻŋāύā§āϝāĻžāϏ:
āĻĒāϰā§āĻŦ – Chordata
āĻāĻĒāĻĒāϰā§āĻŦ – Vertebrata
āĻļā§āϰā§āĻŖāĻŋ – Mammalia
āĻŦāϰā§āĻ â Primates
āĻāĻĒāĻŦāϰā§āĻ – Hominoidea
āĻā§āϤā§āϰ – Hominidae
āĻāĻŖ – Homo
16. āύāĻŋāĻŽā§āύā§āĻā§āϤ āĻĒā§āϰāĻžāĻŖā§āĻĻā§āϰ āĻŦā§āĻā§āĻāĻžāύāĻŋāĻ āύāĻžāĻŽ āϞāĻŋāĻāĨ¤
a. āĻā§āϞāĻā§āĻŽāĻŋ | b. āĻāĻĒā§āϞ āĻļāĻžāĻŽā§āĻ | c. āĻā§āĻāĻ |
d. āϰā§āĻāĻŽāĻžāĻ | e. āĻāĻĄāĻŧāĻŋāϝāĻŧāĻžāϞ | f. āĻĻā§āϝāĻŧā§āϞ |
āĻāϤā§āϤāϰ: āĻĒā§āϰāĻžāĻŖā§āĻĻā§āϰ āĻŦā§āĻā§āĻāĻžāύāĻŋāĻ āύāĻžāĻŽ āύāĻŋāĻā§ āĻāϞā§āϞā§āĻ āĻāϰāĻž āĻšāϞā§:
āĻĒā§āϰāĻžāĻŖā§āϰ āύāĻžāĻŽ | āĻŦā§āĻā§āĻāĻžāύāĻŋāĻ āύāĻžāĻŽ |
(a) āĻā§āϞāĻā§āĻŽāĻŋ | Ascaris lambricoides |
(b) āĻāĻĒā§āϞ āĻļāĻžāĻŽā§āĻ | Pila globosa |
(c) āĻā§āĻāĻ | Hiradinaria manillensis |
(d) āϰā§āĻāĻŽāĻžāĻ | Labeo rohita |
(e) āĻāĻĄāĻŧāĻŋāϝāĻŧāĻžāϞ | Gavialis gangeticus |
(f) āĻĻā§āϝāĻŧā§āϞ | Copsychus saularis |
āĻŦāĻžāĻāϞāĻž
17. āϏāĻžāϰāĻŽāϰā§āĻŽ āϞā§āĻ (āĻ
āύāϧāĻŋāĻ āĻāĻžāϰ āĻŦāĻžāĻā§āϝā§) :
āĻāϏāĻŋāϤā§āĻā§ āĻļā§āĻāĻĻāĻŋāύ,
āĻĻāĻŋāύ⧠āĻĻāĻŋāύ⧠āĻŦāĻšā§ āĻŦāĻžāĻĄāĻŧāĻŋāϝāĻŧāĻžāĻā§ āĻĻā§āύāĻž, āĻļā§āϧāĻŋāϤ⧠āĻšāĻāĻŦā§ āĻāĻŖ!
āĻšāĻžāϤā§āĻĄāĻŧāĻŋ āĻļāĻžāĻŦāϞ āĻāĻžāĻāĻāϤāĻŋ āĻāĻžāϞāĻžāϝāĻŧā§ āĻāĻžāĻāĻŋāϞ āϝāĻžāϰāĻž āĻĒāĻžāĻšāĻžāĻĄāĻŧ,
āĻĒāĻžāĻšāĻžāĻĄāĻŧ-āĻāĻžāĻāĻž āϏ⧠āĻĒāĻĨā§āϰ āĻĻā§āĻĒāĻžāĻļā§ āĻĒāĻĄāĻŧāĻŋāϝāĻŧāĻž āϝāĻžāĻĻā§āϰ āĻšāĻžāĻĄāĻŧ,
āϤā§āĻŽāĻžāϰ⧠āϏā§āĻŦāĻŋāϤ⧠āĻšāĻāϞ āϝāĻžāĻšāĻžāϰāĻž āĻŽāĻā§āϰ, āĻŽā§āĻā§ āĻ āĻā§āϞāĻŋ,
āϤā§āĻŽāĻžāϰ⧠āĻŦāĻšāĻŋāϤ⧠āϝāĻžāϰāĻž āĻĒāĻŦāĻŋāϤā§āϰ āĻ
āĻā§āĻā§ āϞāĻžāĻāĻžāϞ āϧā§āϞāĻŋ;
āϤāĻžāϰāĻžāĻ āĻŽāĻžāύā§āώ, āϤāĻžāϰāĻžāĻ āĻĻā§āĻŦāϤāĻž, āĻāĻžāĻšāĻŋ āϤāĻžāĻšāĻžāĻĻā§āϰāĻŋ āĻāĻžāύ,
āϤāĻžāĻĻā§āϰ āĻŦā§āϝāĻĨāĻŋāϤ āĻŦāĻā§āώ⧠āĻĒāĻž āĻĢā§āϞ⧠āĻāϏ⧠āύāĻŦ āĻāϤā§āĻĨāĻžāύ!
āϏāĻžāϰāĻŽāϰā§āĻŽ: āĻļā§āϰāĻŽāĻā§āĻŦā§ āĻŽāĻžāύā§āώā§āϰ āĻļā§āϰāĻŽā§-āĻāĻžāĻŽā§ āĻ āϰāĻā§āϤ⧠āĻā§āĻŦāύā§āϰ āĻŦāĻŋāύāĻŋāĻŽāϝāĻŧā§ āĻāĻĄāĻŧā§ āĻāĻ ā§āĻā§ āϏā§āĻŦāĻžāĻā§āĻāύā§āĻĻā§āϝāĻŽāϝāĻŧ āϏāĻā§āϝāϤāĻžāĨ¤ āϤāĻžāĻĻā§āϰ āύāĻŋāϰāϞāϏ āĻĒāϰāĻŋāĻļā§āϰāĻŽā§ āĻāĻŽāϰāĻž āϏā§āĻā§ āĻĻāĻŋāύāϝāĻžāĻĒāύ āĻāϰāϤ⧠āϏāĻā§āώāĻŽ āĻšāϝāĻŧā§āĻāĻŋāĨ¤ āĻāĻŋāύā§āϤ⧠āϏāĻŽāĻžāĻā§ āĻ āĻĻā§āĻŦāϤāĻžāϤā§āϞā§āϝ āĻŽāĻžāύā§āώ āύāĻžāύāĻžāĻāĻžāĻŦā§ āĻļā§āώāĻŋāϤ, āĻŦāĻā§āĻāĻŋāϤ āĻ āĻāĻĒā§āĻā§āώāĻŋāϤāĨ¤ āĻāϰāĻžāĻ āĻāĻāĻĻāĻŋāύ
āύāĻŦāĻāĻžāĻāϰāĻŖā§āϰ āĻŽāϧā§āϝāĻĻāĻŋāϝāĻŧā§ āĻŦāĻŋāĻļā§āĻŦā§ āĻĒāĻžāϞāĻžāĻŦāĻĻāϞā§āϰ āϏā§āĻāύāĻž āĻāϰāĻŦā§āĨ¤
18. āĻāĻžāĻŦ āϏāĻŽā§āĻĒā§āϰāϏāĻžāϰāĻŖ āĻāϰ (āĻ
āύāϧāĻŋāĻ āĻāϝāĻŧ āĻŦāĻžāĻā§āϝā§) :
āĻā§āϰāύā§āĻĨāĻāϤ āĻŦāĻŋāĻĻā§āϝāĻž āĻāϰ āĻĒāϰāĻšāϏā§āϤ⧠āϧāύāĨ¤
āύāĻšā§ āĻŦāĻŋāĻĻā§āϝāĻž, āύāĻšā§ āϧāύ, āĻšāϞ⧠āĻĒā§āϰā§ā§āĻāύāĨ¤
āĻŽā§āϞāĻāĻžāĻŦ: āĻ
āϰā§āĻāĻŋāϤ āϏāĻŽā§āĻĒāĻĻ āĻ āĻ
āϰā§āĻāĻŋāϤ āĻā§āĻāĻžāύ āϝāĻĨāĻžāϏāĻŽāϝāĻŧā§ āĻāĻžāĻā§ āϞāĻžāĻāĻžāύā§āĨ¤ āĻā§āϞā§āĻ āĻļā§āϧ⧠āϏāĻžāϰā§āĻĨāĻāϤāĻž āĻĒā§āϰāĻŽāĻžāĻŖāĻŋāϤ āĻšāϤ⧠āĻĒāĻžāϰā§āĨ¤ āĻāĻŋāύā§āϤ⧠āϝ⧠āĻā§āĻāĻžāύ āĻ āĻ
āϰā§āĻĨāϏāĻŽā§āĻĒāĻĻ āĻŽāĻžāύā§āώā§āϰ āĻĒā§āϰā§ā§āĻāύā§āϰ āϏāĻŽāϝāĻŧ āĻāĻžāĻā§ āϞāĻžāĻāĻžāύ⧠āϝāĻžāϝāĻŧ āύāĻž, āϤāĻžāϰ āĻā§āύ⧠āĻŽā§āϞā§āϝ āύā§āĻāĨ¤
āĻāĻžāĻŦ āϏāĻŽā§āĻĒā§āϰāϏāĻžāϰāĻŖ: āĻā§āϰāύā§āĻĨāĻāϤ āĻŦāĻŋāĻĻā§āϝāĻž āϝāĻž āĻāϤā§āĻŽāϏā§āĻĨ āĻāϰāĻž āĻšāϝāĻŧāύāĻŋ āĻāĻŦāĻ āĻāĻŽāύ āϧāύ-āϏāĻŽā§āĻĒāĻĻ āϝāĻž āύāĻŋāĻā§āϰ āĻāϰāĻžāϝāĻŧāϤā§āϤ āĻšāϝāĻŧāύāĻŋ- āĻ āϏāĻŽāϏā§āϤāĻ āύāĻŋāϰāϰā§āĻĨāĻāĨ¤ āĻāĻžāϰāĻŖāĨ¤ āĻĒā§āϰā§ā§āĻāύā§āϝāĻŧ āĻŽā§āĻšā§āϰā§āϤ⧠āĻāĻā§āϞā§āϰ āϝāĻĨāĻžāϝāĻĨ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰāĻž āϏāĻŽā§āĻāĻŦ āĻšāϝāĻŧ āύāĻžāĨ¤ āĻĒā§āĻĨāĻŋāĻŦā§āϤ⧠āĻŽāĻžāύā§āώā§āϰ āĻā§āĻŦāύ⧠āϧāύ-āϏāĻŽā§āĻĒāĻĻ āĻ āĻŦāĻŋāĻĻā§āϝāĻžāϰ āĻā§āϰā§āϤā§āĻŦāĨ¤ āĻ
āĻĒāϰāĻŋāϏā§āĻŽāĨ¤ āĻāĻŋāύā§āϤ⧠āĻŦāĻŋāĻĻā§āϝāĻž āϝāĻĻāĻŋ āĻā§āϰāύā§āĻĨā§āϰ āĻā§āϤāϰā§āĻ āĻŽāϞāĻžāĻāĻŦāĻĻā§āϧ āĻ
āĻŦāϏā§āĻĨāĻžāϝāĻŧāĨ¤ āĻ
āĻŦā§āϝāĻŦāĻšā§āϤ āĻšāϝāĻŧā§ āĻĒāĻĄāĻŧā§ āĻĨāĻžāĻā§, āĻŽāĻžāύā§āώ āϝāĻĻāĻŋ āϤāĻž āĻāϤā§āĻŽāϏā§āĻĨ āύāĻž āĻāϰ⧠āĻāĻŋāĻāĻŦāĻž āĻāϤā§āĻŽāϏā§āĻĨ āĻāϰ⧠āĻāϞāĻŽāĻžāύ āĻā§āĻŦāύ⧠āĻāĻžāĻā§ āϞāĻžāĻāĻžāϤ⧠āύāĻž āĻĒāĻžāϰā§, āϤāĻŦā§ āϏ⧠āĻŦāĻŋāĻĻā§āϝāĻž āĻŽā§āϞāϤ āĻā§āύ⧠āĻŦāĻŋāĻĻā§āϝāĻžāĻ āύāϝāĻŧ āĨ¤ āĻŽāϞāĻžāĻāĻŦāĻĻā§āϧ āĻā§āϰāύā§āĻĨā§āϰ āĻŦāĻŋāĻĻā§āϝāĻžāĻā§ āĻŽāĻžāύā§āώā§āϰ āĻā§āĻŦāύ⧠āĻĒā§āϰā§ā§āĻ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤ āϤāĻŦā§āĻ āϏ⧠āĻŦāĻŋāĻĻā§āϝāĻž āĻĒā§āĻĨāĻŋāĻŦā§āϰ āĻŽāĻžāύā§āώā§āϰ āĻāϞā§āϝāĻžāĻŖ āĻŦāϝāĻŧā§ āĻāύāĻŦā§āĨ¤ āĻ
āύā§āϝāĻĻāĻŋāĻā§, āύāĻŋāĻā§āϰ āĻ
āϰā§āĻāĻŋāϤ āϧāύāϏāĻŽā§āĻĒāϤā§āϤāĻŋ āϝāĻĻāĻŋ āĻ
āύā§āϝā§āϰ āĻāĻžāĻā§ āϰāĻā§āώāĻŋāϤ āĻĨāĻžāĻā§, āϤāĻŦā§ āĻĒā§āϰā§ā§āĻāύā§āϰ āϏāĻŽāϝāĻŧ āϏā§āĻ āϏāĻŽā§āĻĒāϤā§āϤāĻŋ āĻāĻĻā§āϧāĻžāϰ āĻāϰāĻžāĻ āĻ
āύā§āĻ āϏāĻŽāϝāĻŧ āϏāĻŽāϏā§āϝāĻž āĻšāϝāĻŧā§ āĻĻāĻžāĻāĻĄāĻŧāĻžāϝāĻŧ āĨ¤ āĻŦāϰāĻ āύāĻŋāĻā§āϰ āĻāĻžāĻā§ āĻĨāĻžāĻāĻž āϏāĻŽā§āĻĒāϤā§āϤāĻŋāĻ āĻĒā§āϰā§ā§āĻāύā§āϰ āϏāĻŽāϝāĻŧ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰāĻž āϏāĻŽā§āĻāĻŦāĨ¤ āϏā§āϤāϰāĻžāĻ āϏāĻžāϰā§āĻĨāĻ āĻ āϏā§āύā§āĻĻāϰ āĻā§āĻŦāύā§āϰ āĻĒā§āϰā§ā§āĻāύ⧠āĻŦāĻŋāĻĻā§āϝāĻžāĻā§ āĻā§āϰāύā§āĻĨā§āϰ āĻŦāύā§āĻĻāĻŋāĻļāĻžāϞāĻž āĻšāϤ⧠āĻŽā§āĻā§āϤ āĻāϰ⧠āĻāϤā§āĻŽāϏā§āĻĨ āĻāϰāϤ⧠āĻšāĻŦā§, āĻĒāϰā§āϰ āĻšāĻžāϤ⧠āϰāĻā§āώāĻŋāϤ āϏāĻŽā§āĻĒāϤā§āϤāĻŋ āύāĻŋāĻā§āϰ āĻāϰāĻžāϝāĻŧāϤā§āϤ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤ āĻŦāĻŋāĻĻā§āϝāĻž āĻ āϏāĻŽā§āĻĒāĻĻ āϤāĻāύāĻ āϏāĻžāϰā§āĻĨāĻ āĻšāϝāĻŧā§ āĻāĻ ā§ āϝāĻāύ āĻŽāĻžāύā§āώā§āϰ āϝāĻĨāĻžāϰā§āĻĨ āĻĒā§āϰā§ā§āĻāύ āĻŽāĻŋāĻāĻžāϝāĻŧ āĨ¤ āĻāĻŋāύā§āϤ⧠āĻŽāĻžāύā§āώā§āϰ āϝāĻĨāĻžāϰā§āĻĨ āĻĒā§āϰā§ā§āĻāύ⧠āϝāĻĻāĻŋ āϤāĻž āĻāĻžāĻā§ āύāĻž āϞāĻžāĻāĻžāύ⧠āϝāĻžāϝāĻŧ, āϤāĻŦā§ āϏā§āĻ āĻŦāĻŋāĻĻā§āϝāĻž āĻ āĻ
āϰā§āĻĨ āĻŦāĻŋāĻĢāϞāϤāĻžāϰ āύāĻžāĻŽāĻžāύā§āϤāϰāĨ¤
āĻŽāύā§āϤāĻŦā§āϝ: āĻĒāϰāĻŋāĻļā§āώ⧠āĻŦāϞāĻž āϝāĻžāϝāĻŧ āĻā§āĻāĻžāύ āĻ āĻŦāĻŋāĻĻā§āϝāĻž āĻā§āĻŦāύā§āϰ āĻāĻžāĻā§ āϞāĻžāĻāĻžāϤ⧠āĻšāĻŦā§, āĻāϰ āϤāĻžāϤā§āĻ āĻĒā§āϰāϤāĻŋāĻĒāύā§āύ āĻšāĻŦā§ āĻŽāĻžāύāĻŦāĻā§āĻŦāύā§āϰ āϏāĻžāϰā§āĻĨāĻāϤāĻžāĨ¤ āĻā§āύāύāĻž, āĻĒā§āϰā§ā§āĻāύā§āϰ āϏāĻŽāϝāĻŧ āϏāĻŽā§āĻĒāĻĻ āĻ āĻŦāĻŋāĻĻā§āϝāĻž āύāĻŋāĻā§āϰ āĻšāϏā§āϤāĻāϤ āĻĨāĻžāĻāĻž āĻ
āĻĒāϰāĻŋāĻšāĻžāϰā§āϝāĨ¤
19. āĻŦāĻžāĻāϞāĻžāĻĻā§āĻļā§āϰ āĻŽā§āĻā§āϤāĻŋāϝā§āĻĻā§āϧâ āύāĻŋāϝāĻŧā§ ā§ŦāĻāĻŋ āĻŦāĻžāĻā§āϝ āϞā§āĻāĨ¤
āĻāϤā§āϤāϰ : āĻŦāĻžāĻāĻžāϞāĻŋāϰ āĻāĻžāϤā§āϝāĻŧ āĻā§āĻŦāύ⧠āϏāĻŦāĻā§āϝāĻŧā§ āĻā§āϰāĻŦā§āĻā§āĻā§āĻŦāϞ āĻāĻāύāĻž āĻŦāĻžāĻāϞāĻžāĻĻā§āĻļā§āϰ āĻŽā§āĻā§āϤāĻŋāϝā§āĻĻā§āϧāĨ¤ ⧧⧝ā§ā§§ āϏāĻžāϞ⧠āĻŽā§āĻā§āϤāĻŋāϝā§āĻĻā§āϧā§āϰ āĻŽāϧā§āϝ āĻĻāĻŋāϝāĻŧā§āĻ āĻŦāĻžāĻāĻžāϞāĻŋ āϏā§āĻŦāĻžāϧā§āύ āĻāĻžāϤāĻŋ āĻšāĻŋāϏā§āĻŦā§ āϏāĻžāϰāĻž āĻŦāĻŋāĻļā§āĻŦā§ āĻĒāϰāĻŋāĻāĻŋāϤāĻŋ āϞāĻžāĻ āĻāϰā§āĨ¤ āĻŦāĻžāĻāĻžāϞāĻŋ āĻāĻžāϤāĻŋ ⧧⧝ā§ā§§ āϏāĻžāϞ⧠āĻŦāĻā§āĻāĻŦāύā§āϧā§āϰ ā§ āĻŽāĻžāϰā§āĻā§āϰ āĻāĻžāώāĻŖā§ āĻ
āύā§āĻĒā§āϰāĻžāĻŖāĻŋāϤ āĻšāϝāĻŧā§ āϏā§āĻŦāϤāĻāϏā§āĻĢā§āϰā§āϤāĻāĻžāĻŦā§ āĻŽā§āĻā§āϤāĻŋāϝā§āĻĻā§āϧ⧠āϝā§āĻāĻĻāĻžāύ āĻāϰā§āĻāĻŋāϞāĨ¤ ⧧⧝ā§ā§§ āϏāĻžāϞā§āϰ ā§§ā§Ļ āĻāĻĒā§āϰāĻŋāϞ āĻāĻ āĻŋāϤ āĻŽā§āĻāĻŋāĻŦāύāĻāϰ āϏāϰāĻāĻžāϰ āĻŦāĻžāĻāϞāĻžāĻĻā§āĻļā§āϰ āϰāĻŖāĻžāĻā§āĻāύāĻā§ ā§§ā§§āĻāĻŋ āϏā§āĻā§āĻāϰ⧠āĻāĻžāĻ āĻāϰ⧠āĻĒā§āϰāϤā§āϝā§āĻāĻāĻŋāϰ āĻāύā§āϝ āĻāĻāĻāύ āĻāϰ⧠āϏā§āĻā§āĻāϰ āĻāĻŽāĻžāύā§āĻĄāĻžāϰāĻ āύāĻŋāϝā§āĻā§āϤ āĻāϰā§āύāĨ¤ āĻāĻāĻžāĻŦā§āĻ āĻ
āϏā§āĻĨāĻžāϝāĻŧā§ āϏāϰāĻāĻžāϰā§āϰ āϤāϤā§āϤā§āĻŦāĻžāĻŦāϧāĻžāύ⧠āĻĻā§āϰā§āĻ āύāϝāĻŧ āĻŽāĻžāϏā§āϰ āϏāĻļāϏā§āϤā§āϰ āĻŽā§āĻā§āϤāĻŋāϝā§āĻĻā§āϧā§āϰ āĻĒāϰ āĻŦāĻžāĻāϞāĻžāĻĻā§āĻļ āĻ
āĻŦāĻļā§āώ⧠āϏā§āĻŦāĻžāϧā§āύāϤāĻžāϰ āϞāĻžāϞ āϏā§āϰā§āϝ āĻāĻŋāύāĻŋāϝāĻŧā§ āĻāύāϤ⧠āϏāĻā§āώāĻŽ āĻšāϝāĻŧāĨ¤ āĻŽā§āĻā§āϤāĻŋāϝā§āĻĻā§āϧā§āϰ āϏāĻŽāϝāĻŧ āĻĻā§āĻļāĻŽāĻžāϤā§āĻāĻžāϰ āĻāĻžāύ⧠āĻŦāĻžāĻāϞāĻžāĻĻā§āĻļā§āϰ āĻŽāĻžāύā§āώ āĻāϤā§āĻŽāϤā§āϝāĻžāĻā§āϰ āϝ⧠āĻĻā§āώā§āĻāĻžāύā§āϤ āϰā§āĻā§āĻā§ āϤāĻž āĻāϤāĻŋāĻšāĻžāϏ⧠āĻŦāĻŋāϰāϞ āϤāĻžāĻāϤ⧠āĻāĻŦāĻŋ āϏā§āĻāĻžāύā§āϤ āĻāĻā§āĻāĻžāĻāĻžāϰā§āϝā§āϰ āĻāĻŖā§āĻ ā§ āϧā§āĻŦāύāĻŋāϤ āĻšāϝāĻŧā§āĻā§-
āϏāĻžāĻŦāĻžāϏ āĻŦāĻžāĻāϞāĻžāĻĻā§āĻļ, āĻ āĻĒā§āĻĨāĻŋāĻŦā§āĨ¤
āĻ
āĻŦāĻžā§°ā§ āϤāĻžāĻāĻŋāϝāĻŧā§ āϰāϝāĻŧ;
āĻā§āĻŦāϞā§-āĻĒā§āĻĄāĻŧā§-āĻŽāϰ⧠āĻāĻžāϰāĻāĻžāϰ
āϤāĻŦā§ āĻŽāĻžāĻĨāĻž āύā§āϝāĻŧāĻžāĻŦāĻžāϰ āύāϝāĻŧāĨ¤
20. āĻŦāĻŋāĻĒāϰā§āϤ āĻļāĻŦā§āĻĻ āϞā§āĻ :
āĻāϏāĻŽāĻžāύ
āϏā§āĻĨā§āϞāĻŦā§āĻĻā§āϧāĻŋ
āĻāĻžāϞā§āĻĒāύāĻŋāĻ
āĻāϤā§āϤāϰ
āĻļā§āĻŦā§āĻĻ | āĻŦāĻŋāĻĒāϰā§āϤ āĻļāĻŦā§āĻĻ |
āĻāϏāĻŽāĻžāύ | āĻāĻŽāĻŋāύ |
āϏā§āĻā§āϞāĻŦā§āĻĻā§āϧāĻŋ | āϏā§āĻā§āώā§āĻŽāĻŦā§āĻĻā§āϧāĻŋ |
āĻāĻžāϞā§āĻĒāύāĻŋāĻ | āĻŦāĻžāϏā§āϤāĻŦāĻŋāĻ |
English
21. Hold fast to dreams
For if dreams die
Life is a broken-winged bird
That cannot fly
Which poem are these lines taken from? Who is the writer of the poem? What does he mean by “Life is a broken-winged bird”?
Ans: These lines are taken from the poem Dreams written by American poet James Mercer Langston Hughes (1902-1967). The poem is quite short, comprising of two stanzas only including eight lines long. Langston Hughes starts out his poem, Dreams by immediately concerning readers with a piece of advice: ‘Hold fast to dreams’ In the very first line, he mentions the readers about the importance of dreams in our life. The dreams of future progress our life and help to achieve the goals. If our dreams die, our life can be brutal, meaningless and hopeless. The poet uses the phrase ‘a broken-winged bird’ at three line in the first stanza as a metaphor. In literature, the bird symbolizes hope, ecstasy and liberty. âBrokenwinged bird’ means hopeless, joylessness and slavery. The poet means by the line ‘Life is a brokenwinged bird’ that a person becomes purposeless and hopeless without dreams.
22. Write six sentences on ‘The influcence of culture
on adolescents’
Ans: The influence of culture for on adolescence Adolescence is a stage of development, a period of transition between childhood and adulthood. All adolescents go through changes; physical changes, social and emotional changes and the process of developing their individual identity. They came from different backgrounds are influenced by different cultural norms and different attitudes towards values and norms in society. Parents and family life are the foundations for building an adolescence’s personality and identity, instilling values and social norms. Parenting practices are influenced by culture and an adolescent’s upbringing is affected by ethnic group, values and traditions that he belongs to. So culture has a strong influence on development, behavior, values and beliefs. Family rituals and good communication have a positive affect on adolescents. Parents who instill positive cultural values and beliefs in their children help raise their self-cteem and
academic success.
23. Write six sentences on the importance of
biodiversity for our livelihood.
Ans: The importance of biodiversity for our livelihood Biodiversity is the existence of a large number of different kinds of animals and plants which make a balanced environment. Millions people depend on nature and species for their day-to-day livelihood. Biodiversity has an important role for our livelihood. Because biodiversity provides many sources of food, fuel, medicines and other products of natural materials. People can use these for earning source. Nature-related tourism is also a significant income generator for many people.
24. What is rhyme? why do writers use rhyme in poems?
Ans: Rhyme: Rhyme is a repetition of similar sounding words, occuring at the end of lines in poem or songs. A rhyme is a tool utilizing repeating patterns that bring rhythm or musicality to poems.
“Shall I compare thee to a summer’s day?
Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May, And summer’s lease hath all too short a date:’ (Sonnet 18 by William Shakespeare) There are different types of rhymes used in poems.
- End Rhyme
- Internal Rhyme
- Slant Rhyme
- Rich Rhyme
- Eye Rhyme
- Identical Rhyme
The writers make a poem musical to readers by using the rhyme. The writers use it to make a poem musical and