DU A Unit Admission Question Solution 2019-2020

DU A Unit Admission Question Solution 2019-2020

āύāĻŋāĻšā§‡āϰ āĻ­āĻŋāĻĄāĻŋāĻ“āϤ⧇ āĻĻ⧇āϖ⧇ āύāĻžāĻ“ āĻŦāĻŋāĻ¸ā§āϤāĻžāϰāĻŋāϤ:

āϕ⧋āĻ°ā§āϏāϟāĻŋ āĻ•āĻŋāύāϤ⧇ āĻĒāĻžāĻļ⧇āϰ āĻŦāĻžāϟāύāϟāĻŋ āĻ•ā§āϞāĻŋāĻ• āĻ•āϰ:   

 

āϕ⧋āĻ°ā§āϏ⧇āϰ āĻĄā§‡āĻŽā§‹ āĻ­āĻŋāĻĄāĻŋāĻ“(āĻāĻ­āĻžāĻŦ⧇ āĻĒāĻĻāĻžāĻ°ā§āĻĨāĻŦāĻŋāĻœā§āĻžāĻžāύ+āϰāϏāĻžā§Ÿāύ+āωāĻšā§āϚāϤāϰāĻ—āĻŖāĻŋāϤ āĻāϰ āĻŦāĻŋāĻ—āϤ āĻŦāĻŋāĻļ āĻŦāĻ›āϰ⧇āϰ āϏāĻ•āϞ āĻĒā§āϰāĻļā§āύ⧇āϰ āϏāĻŽāĻžāϧāĻžāύ āĻĨāĻžāĻ•āĻŦ⧇ āĻ­āĻŋāĻĄāĻŋāĻ“āϤ⧇)

 







āĻĒāĻĻāĻžāĻ°ā§āĻĨāĻŦāĻŋāĻœā§āĻžāĻžāύ

  1. āĻĻ⧁āχāϟāĻŋ āϭ⧇āĻ•ā§āϟāϰ \(\overrightarrow{\mathbf{A}}=3 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}\) āĻāĻŦāĻ‚ \(\overrightarrow{\mathbf{B}}=5 \hat{\mathbf{i}}+5 \hat{\mathbf{k}}\) āĻāϰ āĻŽāĻ§ā§āϝāĻŦāĻ°ā§āϤ⧀ āϕ⧋āĻŖ āĻ•āϤ?
    1. \(60^{\circ}\)
    2. \(30^{\circ}\)
    3. \(45^{\circ}\)
    4. \(90^{\circ}\)

    Ans. \(60^{\circ}\)

  2. āĻ¸ā§āĻĨāĻŋāϰ āĻ…āĻŦāĻ¸ā§āĻĨāĻžāϝāĻŧ āĻĨāĻžāĻ•āĻž āĻāĻ•āϟāĻŋ āĻŦāĻ¸ā§āϤ⧁ āĻŦāĻŋāĻ¸ā§āĻĢā§‹āϰāĻŋāϤ āĻšāϝāĻŧ⧇ \(\mathrm{m}_{1}\) āĻ“ \(\mathbf{m}_{2}\) āĻ­āϰ⧇āϰ
    āĻĻ⧁āχāϟāĻŋ āĻŦāĻ¸ā§āϤ⧁āϤ⧇ āĻĒāϰāĻŋāĻŖāϤ āĻšāϝāĻŧ⧇ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ \(\mathbf{v}_{\mathbf{1}}\) āĻ“ \(\mathbf{v}_{2}\) āĻŦ⧇āϗ⧇ āĻŦāĻŋāĻĒāϰ⧀āϤ āĻĻāĻŋāϕ⧇ āϚāϞāĻŽāĻžāύāĨ¤ \(\frac{\mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{2}}}\) āĻāϰ āĻ…āύ⧁āĻĒāĻžāϤ āĻ•āϤ?

    1. \(\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}\)
    2. \(-\frac{m_{1}}{m_{2}}\)
    3. \(\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}\)
    4. \(\sqrt{\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}}\)

    Ans. \(\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}\)

  3. āĻāĻ•āϟāĻŋ āĻ—āĻžāĻĄāĻŧāĻŋ āĻ¸ā§āĻĨāĻŋāϰ āĻ…āĻŦāĻ¸ā§āĻĨāĻž (P āĻŦāĻŋāĻ¨ā§āĻĻ⧁) āĻšāϤ⧇ āϏ⧋āϜāĻž āϰāĻžāĻ¸ā§āϤāĻžāϝāĻŧ āϝāĻžāĻ¤ā§āϰāĻž
    āĻļ⧁āϰ⧁ āĻ•āϰāϞāĨ¤ āĻ•āĻŋāϛ⧁ āϏāĻŽāϝāĻŧ āĻĒāϰ⧇ āĻ—āĻžāĻĄāĻŧāĻŋāϟāĻŋ āĻŽāĻ¨ā§āĻĻāύ⧇āϰ āĻĢāϞ⧇ āĻĨ⧇āĻŽā§‡ āϗ⧇āϞ āĻāĻŦāĻ‚ āĻāĻ•āχ āĻ­āĻžāĻŦ⧇ (āĻĒā§āϰāĻĨāĻŽ āĻ—āϤāĻŋ āĻŦāĻžāĻĄāĻŧāĻŋāϝāĻŧ⧇ āĻāĻŦāĻ‚ āĻĒāϰ⧇ āĻ—āϤāĻŋ āĻ•āĻŽāĻŋāϝāĻŧ⧇) āφāĻŦāĻžāϰ āϝāĻžāĻ¤ā§āϰāĻž āĻļ⧁āϰ⧁ āĻ•āϰ⧇ P āĻŦāĻŋāĻ¨ā§āĻĻ⧁āϤ⧇ āĻĢāĻŋāϰ⧇ āφāϏāϞ⧋āĨ¤ āύāĻŋāĻšā§‡āϰ āϕ⧋āύ āϞ⧇āĻ–āϚāĻŋāĻ¤ā§āϰāϟāĻŋ āĻ—āĻžāĻĄāĻŧāĻŋāϰ āĻ—āϤāĻŋāϕ⧇ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰ⧇?

    Ans.

  4. āύāĻŋāĻšā§‡āϰ āϕ⧋āύāϟāĻŋ āĻ­āϰ⧇āϰ āĻāĻ•āĻ• āύāϝāĻŧ?
    1. a.m.u
    2. \(\mathrm{Nm}^{-1} \mathrm{~s}^{2}\)
    3. \(\mathrm{MeV}\)
    4. \(\frac{\mathrm{MeV}}{\mathrm{c}^{2}}\)

    Ans. \(\mathrm{MeV}\)

  5. āϏāϰāϞ āĻ›āĻ¨ā§āĻĻāĻŋāϤ āĻ—āϤāĻŋāϤ⧇ āĻ¸ā§āĻĒāĻ¨ā§āĻĻāύāϰāϤ āĻĻ⧁āϟāĻŋ āĻ•āĻŖāĻžāϰ āϏāϰāĻŖ \(\mathbf{x}_{1}=\mathbf{A} \sin \omega \mathbf{t}\)
    āĻāĻŦāĻ‚ \(\mathbf{x}_{\mathbf{2}}=\mathbf{A} \cos \omega \mathbf{t}\) āϝ⧇ āϕ⧋āύ⧋ āϏāĻŽāϝāĻŧ⧇ āĻāĻĻ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āĻĻāĻļāĻž āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ āĻ•āϤ āĻšāĻŦ⧇?

    1. \(2 \pi\)
    2. \(\pi\)
    3. \(\frac{\pi}{2}\)
    4. \(\frac{\pi}{4}\)

    Ans. \(\frac{\pi}{2}\)

  6. āĻŦā§āϝāϤāĻŋāϚāĻžāϰ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āωāĻœā§āĻœā§āĻŦāϞ āĻŦāĻž āĻ—āĻ āύāĻŽā§‚āϞāĻ• āĻāĻžāϞāϰ⧇āϰ āĻļāĻ°ā§āϤ āϕ⧋āύāϟāĻŋ?
    1. \(\sin \theta=(2 n+1) \frac{\lambda}{2}\)
    2. a \(\sin \theta=n \lambda\)
    3. \(\sin \theta=n \frac{\lambda}{2}\)
    4. \(a \sin \theta=(2 n+1) \lambda\)

    Ans. a \(\sin \theta=n \lambda\)

  7. āύāĻŋāĻšā§‡āϰ āĻŦāĻ°ā§āϤāύ⧀āϤ⧇ āϤāĻĄāĻŧāĻŋā§ŽāĻĒā§āϰāĻŦāĻžāĻš \(\mathbf{I}_{\mathbf{1}}\) āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
    1. \(0.2 \mathrm{~A}\)
    2. \(0.4 \mathrm{~A}\)
    3. \(0.6 \mathrm{~A}\)
    4. \(1.2 \mathrm{~A}\)

    Ans. \(0.4 \mathrm{~A}\)

  8. āĻāĻ•āϟāĻŋ āĻ•āĻžāĻ°ā§āύ⧋ āχāĻžā§āϜāĻŋāύ 500 K āĻāĻŦāĻ‚ 250 k āϤāĻžāĻĒāĻŽāĻžāĻ¤ā§āϰāĻžāϰ āφāϧāĻžāϰ⧇āϰ
    āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āĻĒāϰāĻŋāϚāĻžāϞāĻŋāϤ āĻšāϝāĻŧāĨ¤ āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ• āϚāĻ•ā§āϰ⧇ āχāĻžā§āϜāĻŋāύ āϝāĻĻāĻŋ āĻ‰ā§ŽāϏ āĻĨ⧇āϕ⧇ 1kcal āϤāĻžāĻĒ āĻ—ā§āϰāĻšāĻŖ āĻ•āϰ⧇ āϤāĻžāĻšāϞ⧇ āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ• āϚāĻ•ā§āϰ⧇ āϤāĻžāĻĒ āĻ—ā§āϰāĻžāĻšāϕ⧇ āϤāĻžāĻĒ āĻŦāĻ°ā§āϜāύ āĻ•āϰāĻžāϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ āĻ•āϤ?

    1. 500 kcal
    2. 1000 cal
    3. 500 cal
    4. 10 kcal

    Ans. 500 cal

  9. q āĻĒāϰāĻŋāĻŽāĻžāĻŖ āφāϧāĻžāύ āĻāĻ•āϟāĻŋ āϚ⧌āĻŽā§āĻŦāĻ• āĻ•ā§āώ⧇āĻ¤ā§āϰ \(\overrightarrow{\mathbf{B}}\) āĻāϰ āϏāĻžāĻĨ⧇ āϏāĻŽāĻžāĻ¨ā§āϤāϰāĻžāϞ⧇
    \(\overrightarrow{\mathbf{v}}\) āĻŦ⧇āϗ⧇ āĻ—āϤāĻŋāĻļā§€āϞāĨ¤ āωāĻ•ā§āϤ āĻ¸ā§āĻĨāĻžāύ⧇ āĻāĻ•āϟāĻŋ āϤāĻĄāĻŧāĻŋā§ŽāĻ•ā§āώ⧇āĻ¤ā§āϰ \(\overrightarrow{\mathbf{E}}\) āĻĨāĻžāĻ•āϞ⧇ āφāϧāĻžāύ⧇āϰ āωāĻĒāϰ āĻ•ā§āϰāĻŋāϝāĻŧāĻžāĻļā§€āϞ āĻŦāϞ āĻ•āϤ āĻšāĻŦ⧇?

    1. \(\mathrm{q}(\overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})\)
    2. \(\mathrm{q}(\overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{B}})\)
    3. \(\mathrm{q} \overrightarrow{\mathrm{E}}\)
    4. \(q(\vec{E}+\vec{B})\)

    Ans. \(\mathrm{q} \overrightarrow{\mathrm{E}}\)

  10. āĻ•āĻžāĻ—āĻœā§‡āϰ āĻ­āĻžāϰ āĻšāĻŋāϏāĻžāĻŦ⧇ āĻŦā§āϝāĻŦāĻšā§ƒāϤ āĻāĻ•āϟāĻŋ āĻĒ⧁āϰ⧁ āĻ•āĻžāϚ (āĻĒā§āϰāϤāĻŋāϏāϰāĻžāĻ™ā§āĻ•
    1.5) āĻ–āĻŖā§āĻĄā§‡āϰ āωāĻĒāϰ āĻĨ⧇āϕ⧇ āĻ–āĻžāĻĄāĻŧāĻž āύāĻŋāĻšā§‡āϰ āĻĻāĻŋāϕ⧇ āϤāĻžāĻ•āĻžāϞ⧇ āĻ•āĻžāĻ—āĻœā§‡āϰ āωāĻĒāϰ āĻāĻ•āϟāĻŋ āĻĻāĻžāĻ— āĻ•āĻžāĻšā§‡āϰ āωāĻĒāϰ āĻĒā§āϰāĻžāĻ¨ā§āϤ āĻĨ⧇āϕ⧇ 6 cm āύāĻŋāĻšā§‡ āĻĻ⧇āĻ–āĻž āϝāĻžāϝāĻŧāĨ¤ āĻ•āĻžāϚ āĻ–āĻŖā§āĻĄāϟāĻŋāϰ āĻĒ⧁āϰ⧁āĻ¤ā§āĻŦ āĻ•āϤ?

    1. 4 cm
    2. 6 cm
    3. 9 cm
    4. 12 cm

    Ans. 9 cm

  11. āĻāĻ•āϟāĻŋ āĻŦāĻ¸ā§āϤ⧁ \(\pi \mathrm{m}\) āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ⧇āϰ āĻŦ⧃āĻ¤ā§āϤāĻžāĻ•āĻžāϰ āĻĒāĻĨ⧇ \(4.0 \mathrm{~m} / \mathrm{s}\) āϏāĻŽāĻĻā§āϰ⧁āϤāĻŋāϤ⧇
    āϘ⧁āϰāϛ⧇āĨ¤ āĻāĻ•āĻŦāĻžāϰ āϘ⧁āϰ⧇ āφāϏāϤ⧇ āĻŦāĻ¸ā§āϤ⧁āϟāĻŋāϰ āĻ•āϤ āϏāĻŽāϝāĻŧ āϞāĻžāĻ—āĻŦ⧇?

    1. \(2 / \pi^{2} \mathrm{~s}\)
    2. \(\pi^{2} / 2 \mathrm{~s}\)
    3. \(\pi / 2 \mathrm{~s}\)
    4. \(\pi^{2} / 4 \mathrm{~s}\)

    Ans. \(\pi^{2} / 2 \mathrm{~s}\)

  12. 5 m āωāĻšā§āϚāϤāĻž āĻšāϤ⧇ āĻāĻ•āϟāĻŋ āĻŦāϞāϕ⧇ 20 m/s āĻŦ⧇āϗ⧇ āĻ…āύ⧁āĻ­ā§‚āĻŽāĻŋāϕ⧇āϰ āϏāĻžāĻĨ⧇
    30° āϕ⧋āϪ⧇ āωāĻĒāϰ⧇āϰ āĻĻāĻŋāϕ⧇ āύāĻŋāĻ•ā§āώ⧇āĻĒ āĻ•āϰāĻž āĻšāϞ⧋āĨ¤ āϤāĻžāĻšāϞ⧇ āĻŦāϞāϟāĻŋāϰ āĻŦāĻŋāϚāϰāĻŖāĻ•āĻžāϞ āĻ•āϤ?

    1. \(\frac{10+\sqrt{198}}{9.8} \mathrm{~s}\)
    2. \(\frac{10 \sqrt{198}}{9.8} \mathrm{~s}\)
    3. \(\frac{10 \pm \sqrt{198}}{9.8} \mathrm{~s}\)
    4. \(\frac{10 \pm \sqrt{2}}{9.8} \mathrm{~s}\)

    Ans. \(\frac{10+\sqrt{198}}{9.8} \mathrm{~s}\)

  13. 10 cm āϞāĻŽā§āĻŦāĻž āĻ“ 0.5 cm āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āĻāĻ•āϟāĻŋ āϤāĻžāĻŽāĻž āĻ“ āĻāĻ•āϟāĻŋ
    āϞ⧋āĻšāĻžāϰ āϤāĻžāϰāϕ⧇ āĻœā§‹āĻĄāĻŧāĻž āϞāĻžāĻ—āĻŋāϝāĻŧ⧇ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ 20 cm āĻ•āϰāĻž āĻšāϞ⧋āĨ¤ āĻœā§‹āĻĄāĻŧāĻž āϞāĻžāĻ—āĻžāύ⧋ āϤāĻžāϰāϟāĻŋāϕ⧇ āĻŦāϞ āĻĒā§āĻ°ā§Ÿā§‹āĻ— āĻ•āϰ⧇ āϞāĻŽā§āĻŦāĻž āĻ•āϰāĻž āĻšāϞ⧋āĨ¤ āϞ⧋āĻšāĻžāϰ āχāϝāĻŧāĻ‚-āĻāϰ āϗ⧁āĻŖāĻžāĻ™ā§āĻ• āϤāĻžāĻŽāĻžāϰ āχāϝāĻŧāĻ‚āϝāĻŧ⧇āϰ āϗ⧁āĻŖāĻžāĻ™ā§āϕ⧇āϰ āĻĻ⧁āχāϗ⧁āĻŖ āĻšāϞ⧇ āϞ⧋āĻšāĻžāϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āĻŦ⧃āĻĻā§āϧāĻŋ āĻ“ āϤāĻžāĻŽāĻžāϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āĻŦ⧃āĻĻā§āϧāĻŋāϰ āĻ…āύ⧁āĻĒāĻžāϤ āĻ•āϤ?

    1. 1:8
    2. 1:6
    3. 1:4
    4. 1:2

    Ans. 1:2

  14. āĻāĻ•āϟāĻŋ āĻ¸ā§āĻĨāĻŋāϰ āϤāϰāĻ™ā§āϗ⧇ āĻĒāϰāĻĒāϰ āĻĻ⧁āϟāĻŋ āύāĻŋāĻ¸ā§āĻĒāĻ¨ā§āĻĻ āĻŦāĻŋāĻ¨ā§āĻĻ⧁āϰ āĻŽāĻ§ā§āϝāĻŦāĻ°ā§āϤ⧀ āĻĻā§‚āϰāĻ¤ā§āĻŦ 1m, āĻāϰ āϤāϰāĻ™ā§āĻ—āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āĻ•āϤ?
    1. 25 cm
    2. 50 cm
    3. 100 cm
    4. 200 cm

    Ans. 200 cm

  15. āĻ…ā§āϝāĻžāϞ⧁āĻŽāĻŋāύāĻŋāϝāĻŧāĻžāĻŽ, āĻšāĻŋāϞāĻŋāϝāĻŧāĻžāĻŽ āĻāĻŦāĻ‚ āϏāĻŋāϞāĻŋāĻ•āύ⧇āϰ āĻĒāĻžāϰāĻŽāĻžāĻŖāĻŦāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ 13, 2 āĻāĻŦāĻ‚ 14 āĻšāϞ⧇, \(_{13} \mathbf{A l}^{27}+_{2}\mathbf{H e}^{4} \rightarrow _{14}\mathbf{S i}^{28}+()\) āύāĻŋāωāĻ•ā§āϞāĻŋāϝāĻŧāĻžāϰ āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϤ⧇ āĻ…āύ⧁āĻĒāĻ¸ā§āĻĨāĻŋāϤ āĻ•āĻŖāĻž āϕ⧋āύāϟāĻŋ?
    1. an \(\alpha\) particle
    2. an electron
    3. a positron
    4. a proton

    Ans. āĻĒā§āϰāĻļā§āύāϟāĻŋ āϭ⧁āϞ āφāϛ⧇āĨ¤

āϰāϏāĻžā§Ÿāύ

  1. āĻĒā§āϰ⧋āϟāĻŋāύ āĻ…āϪ⧁āϰ āĻŽāĻ§ā§āϝ⧇ āĻ…ā§āϝāĻžāĻŽāĻžāχāύ⧋ āĻāϏāĻŋāĻĄā§‡āϰ āĻ…āϪ⧁āϏāĻŽā§‚āĻš āϝ⧇ āĻŦāĻ¨ā§āϧāύ āĻĻā§āĻŦāĻžāϰāĻž
    āϝ⧁āĻ•ā§āϤ āĻĨāĻžāϕ⧇-

    1. Glycosidic bond

    2. Peptide bond
    3. Hydrogen bond

    4. Metallic bond

    Ans. Peptide bond

  2. āύāĻŋāĻŽā§āύ⧇āϰ āϕ⧋āύāϟāĻŋāϕ⧇ āϏāĻžāϧāĻžāϰāĻŖāϤ āϤāϰāϞ-āϤāϰāϞ āĻ•ā§āϰ⧋āĻŽāĻžāĻŸā§‹āĻ—ā§āϰāĻžāĻĢāĻŋ āĻŦāϞ⧇?

    1. āĻ—ā§āϝāĻžāϏ āĻ•ā§āϰ⧋āĻŽāĻžāĻŸā§‹āĻ—ā§āϰāĻžāĻĢāĻŋ
    2. āĻ•āĻžāĻ—āϜ āĻ•ā§āϰ⧋āĻŽāĻžāĻŸā§‹āĻ—ā§āϰāĻžāĻĢāĻŋ
    3. āĻ•āϞāĻžāĻŽ āĻ•ā§āϰ⧋āĻŽāĻžāĻŸā§‹āĻ—ā§āϰāĻžāĻĢāĻŋ
    4. āĻĒāĻžāϤāϞāĻž āĻ¸ā§āϤāϰ āĻ•ā§āϰ⧋āĻŽāĻžāĻŸā§‹āĻ—ā§āϰāĻžāĻĢāĻŋ

    Ans. āĻ•āĻžāĻ—āϜ āĻ•ā§āϰ⧋āĻŽāĻžāĻŸā§‹āĻ—ā§āϰāĻžāĻĢāĻŋ

  3. \(\mathrm{Fe}(\mathrm{s})\left|\mathrm{Fe}^{\mathrm{2}^{+}}(\mathrm{aq}) \| \mathrm{Br}_{2}(l) ; \mathrm{Br}^{-}(\mathrm{aq})\right| \mathrm{Pt}(\mathrm{s})\) āϤāĻĄāĻŧāĻŋā§Ž
    āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ• āϕ⧋āώ⧇āϰ āϏāĻ āĻŋāĻ• āϕ⧋āώ-āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻž āϕ⧋āύāϟāĻŋ?

    1. \(\mathrm{Fe}+\mathrm{Br}_{2} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{Br}^{-}\)
    2. \(\mathrm{Fe}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Br}_{2}\)
    3. \(\mathrm{Fe}^{2+}+\mathrm{Br}_{2} \rightarrow \mathrm{Fe}+2 \mathrm{Br}^{-}\)
    4. \(\mathrm{Fe} \rightarrow \mathrm{Fe}^{3+}+2 \mathrm{Br}^{-}\)

    Ans. \(\mathrm{Fe}+\mathrm{Br}_{2} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{Br}^{-}\)

  4. āύāĻŋāĻŽā§āύ⧇āϰ āϕ⧋āύ āϝ⧌āĻ—āϟāĻŋ āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋāĻ• āϏāĻŽāĻžāϪ⧁āϤāĻž āĻĒā§āϰāĻĻāĻ°ā§āĻļāύ āĻ•āϰ⧇?
    1. \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\)
    2. \(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}\)
    3. \(\left(\mathrm{CH}_{5}\right)_{2} \mathrm{NH}\)
    4. \(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}\)

    Ans. \(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}\)

  5. āφāĻ°ā§āĻĻā§āϰ āĻŦāĻžāϤāĻžāϏ⧇āϰ āϏāĻ‚āĻ¸ā§āĻĒāĻ°ā§āĻļ⧇ āĻ•ā§āϝāĻžāϞāϏāĻŋāϝāĻŧāĻžāĻŽ āĻ•āĻžāĻ°ā§āĻŦāĻžāχāĻĄ āύāĻŋāĻŽā§āύ⧇āϰ āϕ⧋āύ āϝ⧌āĻ—āϟāĻŋ
    āĻ‰ā§ŽāĻĒāĻ¨ā§āύ āĻ•āϰ⧇?

    1. Ethanal
    2. Ethane
    3. Ethyne
    4. Ethene

    Ans. Ethyne

  6. āωāĻ¤ā§āϤ⧇āϜāĻŋāϤ āĻ…āĻŦāĻ¸ā§āĻĨāĻžāϝāĻŧ āĻšāĻžāχāĻĄā§āϰ⧋āĻœā§‡āύ āĻĒāϰāĻŽāĻžāϪ⧁āϰ āϕ⧋āϝāĻŧāĻžāĻ¨ā§āϟāĻžāĻŽ āϏāĻ‚āĻ–ā§āϝāĻž
    n = 4,l= 1 āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āĻ…āϰāĻŦāĻŋāϟāĻžāϞāϟāĻŋ āĻ•āĻŋ?

    1. s orbital
    2. p orbital
    3. \(\mathrm{d}_{\mathrm{Z}}^{2}\) orbital
    4. \(\mathrm{d}_{\mathrm{x}}^{2}-\mathrm{y}^{2}\) orbital

    Ans. p orbital

  7. \(\mathrm{CH}_{3}-\mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)-\mathrm{CH}_{2}-\mathrm{CHBr}-\mathrm{CHCl}-\mathrm{CH}_{3}\)āϝ⧇⧗āĻ—āϟāĻŋāϰ IUPAC āύāĻžāĻŽ āĻšāϞ⧋-
    1. 2-āĻ•ā§āϞ⧋āϰ⧋-3-āĻŦā§āϰ⧋āĻŽā§‹-5-āχāĻĨāĻžāχāϞāĻšā§‡āĻ•ā§āϏ⧇āύ
    2. 2-āĻ•ā§āϞ⧋āϰ⧋-3-āĻŦā§āϰ⧋āĻŽā§‹-5-āĻŽāĻŋāĻĨāĻžāχāϞāĻšā§‡āĻĒāĻŸā§‡āύ
    3. 3-āĻŦā§āϰ⧋āĻŽā§‹-2-āĻ•ā§āϞ⧋āϰ⧋-5-āχāĻĨāĻžāχāϞāĻšā§‡āĻ•ā§āϏ⧇āύ
    4. 3-āĻŦā§āϰ⧋āĻŽā§‹-2-āĻ•ā§āϞ⧋āϰ⧋-5-āĻŽāĻŋāĻĨāĻžāχāϞāĻšā§‡āĻĒāĻŸā§‡āύ

    Ans. 3-āĻŦā§āϰ⧋āĻŽā§‹-2-āĻ•ā§āϞ⧋āϰ⧋-5-āĻŽāĻŋāĻĨāĻžāχāϞāĻšā§‡āĻĒāĻŸā§‡āύ

  8. āĻ•āĻžāĻ°ā§āĻŦāύ āĻŽā§ŒāϞ āĻšā§€āϰāĻž āĻ“ āĻ—ā§āϰāĻžāĻĢāĻžāχāϟ-āĻ āĻ­āĻŋāĻ¨ā§āύāϰ⧂āĻĒāĨ¤ āĻāĻĻ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āϕ⧋āύ āωāĻ•ā§āϤāĻŋāϟāĻŋ
    āϏāĻ¤ā§āϝ āύāϝāĻŧ?

    1. āωāĻ­āϝāĻŧ⧇āχ āĻ•āĻžāĻ°ā§āĻŦāύ āĻŽā§ŒāϞ āĻĻā§āĻŦāĻžāϰāĻž āĻ—āĻ āĻŋāϤāĨ¤
    2. āĻšā§€āϰāĻž āĻ“ āĻ—ā§āϰāĻžāĻĢāĻžāχāĻŸā§‡ āĻ•āĻžāĻ°ā§āĻŦāύ āĻĒāϰāĻŽāĻžāϪ⧁āϰ āϏāĻ‚āĻ•āϰāĻžāϝāĻŧāύ āĻšāϞ⧋ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ \(\mathrm{sp}^{3}\) āĻ“ \(\mathrm{sp}^{2}\)
    3. āωāĻ­āϝāĻŧ⧇āϰ āĻŦāĻŋāĻĻā§āĻ¯ā§ā§Ž āĻĒāϰāĻŋāĻŦāĻžāĻšāĻŋāϤāĻž āĻ­āĻŋāĻ¨ā§āύāĨ¤
    4. āωāĻ­āϝāĻŧ⧇āϰ āĻĻāĻšāύ āϤāĻžāĻĒ āĻāĻ•āχāĨ¤

    Ans. āωāĻ­āϝāĻŧ⧇āϰ āĻĻāĻšāύ āϤāĻžāĻĒ āĻāĻ•āχāĨ¤

  9. MRI āϝāĻ¨ā§āĻ¤ā§āϰ⧇āϰ āϏāĻžāĻšāĻžāĻ¯ā§āϝ⧇ āĻŽāĻžāύāĻŦāĻĻ⧇āĻšā§‡āϰ āϰ⧋āĻ— āύāĻŋāĻ°ā§āĻŖāϝāĻŧ⧇ āϕ⧋āύ āĻŽā§ŒāϞāϟāĻŋāϰ
    āĻ­ā§‚āĻŽāĻŋāĻ•āĻž āϰāϝāĻŧ⧇āϛ⧇?

    1. Neon
    2. Oxygen
    3. Hydrogen
    4. Silicon

    Ans. Hydrogen

  10. āύāĻŋāĻŽā§āύ⧇āϰ āϕ⧋āύ āĻĒāϰ⧀āĻ•ā§āώāĻžāϟāĻŋ āϏāĻžāϞāĻĢāĻŋāωāϰāĻŋāĻ• āĻāϏāĻŋāĻĄ āĻ“ āύāĻžāχāĻŸā§āϰāĻŋāĻ•
    āĻāϏāĻŋāĻĄā§‡āϰ āĻŽāĻ§ā§āϝ⧇ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ āĻ•āϰāϤ⧇ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻž āϝāĻžāϝāĻŧ?

    1. āϏāĻžāĻ°ā§āĻŦāϜāύ⧀āύ āύāĻŋāĻ°ā§āĻĻ⧇āĻļāĻ• āĻĻāĻŋāϝāĻŧ⧇ āĻĒāϰ⧀āĻ•ā§āώāĻž
    2. āϏ⧋āĻĄāĻŋāϝāĻŧāĻžāĻŽ āĻ•āĻžāĻ°ā§āĻŦāύ⧇āϟ āϗ⧁āρāĻĄāĻŧāĻž āϝ⧋āϗ⧇āĨ¤
    3. āĻŽā§āϝāĻžāĻ—āύ⧇āĻļāĻŋāϝāĻŧāĻžāĻŽ āĻĢāĻŋāϤāĻž āϝ⧋āϗ⧇āĨ¤
    4. āĻŦ⧇āϰāĻŋāϝāĻŧāĻžāĻŽ āύāĻžāχāĻŸā§āϰ⧇āϟ āĻĻā§āϰāĻŦāĻŖ āϝ⧋āϗ⧇āĨ¤

    Ans. āĻŦ⧇āϰāĻŋāϝāĻŧāĻžāĻŽ āύāĻžāχāĻŸā§āϰ⧇āϟ āĻĻā§āϰāĻŦāĻŖ āϝ⧋āϗ⧇āĨ¤

  11. āύāĻžāχāĻŸā§āϰ⧇āϟ āĻ…ā§āϝāĻžāύāĻžāϝāĻŧāύ⧇ āĻ•āϝāĻŧāϟāĻŋ āχāϞ⧇āĻ•āĻŸā§āϰāύ āϰāϝāĻŧ⧇āϛ⧇?
    1. 19
    2. 31
    3. 23
    4. 32

    Ans. 32

  12. 50 mL āϤāϰāϞ āĻĒāϰāĻŋāĻŽāĻžāĻĒ āĻ•āϰāϤ⧇ āύāĻŋāĻŽā§āύ⧇āϰ āϕ⧋āύāϟāĻŋāϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āϝāĻĨāĻžāĻ°ā§āĻĨ?
    1. āĻĒāĻŋāĻĒ⧇āϟ
    2. āĻŽāĻžāĻĒāύ āϏāĻŋāϞāĻŋāĻ¨ā§āĻĄāĻžāϰ
    3. āĻŦ⧁āϰ⧇āϟ
    4. āφāϝāĻŧāϤāύāĻŋāĻ• āĻĢā§āϞāĻžāĻ•ā§āϏ

    Ans. āĻŽāĻžāĻĒāύ āϏāĻŋāϞāĻŋāĻ¨ā§āĻĄāĻžāϰ

  13. 0.98g \(\mathrm{H}_{2} \mathrm{SO}_{4}\) āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ 1.0L āϜāĻ˛ā§€ā§Ÿ āĻĻā§āϰāĻŦāĻŖ āϤ⧈āϰāĻŋ āĻ•āϰāĻž āĻšāϞ⧇āĨ¤ āĻĻā§āϰāĻŦāĻŖāϟāĻŋāϰ āϘāύāĻŽāĻžāĻ¤ā§āϰāĻž āĻ•āϤ?

    1. 0.1 M
    2. 0.1 m
    3. 0.01 M
    4. 0.01 m

    Ans. 0.01 M

  14. \(\mathrm{BaMnF}_{4}\) āĻāĻŦāĻ‚ \(\mathrm{Li}_{2} \mathrm{MgFeF}_{6}\) āϝ⧌āĻ—āĻĻā§āĻŦāϝāĻŧ⧇ Mn āĻ“ Fe āĻāϰ āϜāĻžāϰāĻŖ
    āϏāĻ‚āĻ–ā§āϝāĻž āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡-

    1. +2,+2
    2. +5,+2
    3. +4,+3
    4. +5,+3

    Ans. +2,+2

  15. āϕ⧋āύāϟāĻŋ āĻ…āĻŽā§āĻ˛ā§€ā§Ÿ āϜāϞ⧀āϝāĻŧ āĻĻā§āϰāĻŦāĻŖ āϤ⧈āϰāĻŋ āĻ•āϰ⧇?

    1. \(\mathrm{Na}_{2} \mathrm{O}\)
    2. \(\mathrm{ZnO}\)
    3. \(\mathrm{Al}_{2} \mathrm{O}_{3}\)
    4. \(\mathrm{CO}_{2}\)

    Ans. \(\mathrm{CO}_{2}\)

āωāĻšā§āϚāϤāϰ āĻ—āĻŖāĻŋāϤ

  1. \(A=\left(\begin{array}{ll}3 & -4 \\ 2 & -3\end{array}\right)\) āĻšāϞ⧇, \(\operatorname{det}\left(2 \mathrm{~A}^{-1}\right)\) āĻāϰ āĻŽāĻžāύ āĻšāϞ⧋ –

    1. \(\frac{1}{4}\)
    2. \(-4\)
    3. \(4\)
    4. \(-\frac{1}{4}\)

    Ans. \(-4\)

  2. āϝāĻĻāĻŋ \(f(x)=x^{2}-2|x|\) āĻāĻŦāĻ‚ \(g(x)=x^{2}+1\) āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧇ \(g(f(-2))\)
    āĻāϰ āĻŽāĻžāύ āĻ•āϤ?

    1. 0
    2. 1
    3. -1
    4. 5

    Ans. 1

  3. \(\frac{1+i}{1-i}\) āĻāϰ āĻĒāϰāĻŽ āĻŽāĻžāύ āĻšāϞ⧋-
    1. 0
    2. 1
    3. \(\sqrt{2}\)
    4. i

    Ans. 1

  4. \(\underset {x \rightarrow -\infty} {\overset { } {\mathrm lim} } \frac{\sqrt{x^{2}+2 x}}{-x}\) āĻāϰ āĻŽāĻžāύ āĻšāϞ⧋-

    1. 1
    2. \(\infty\)
    3. \(-\infty\)
    4. -1

    Ans. -1

  5. (4, 3) āϕ⧇āĻ¨ā§āĻĻā§āϰāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āĻāĻŦāĻ‚ 5x – 12y + 3 = 0 āϏāϰāϞāϰ⧇āĻ–āĻžāϕ⧇
    āĻ¸ā§āĻĒāĻ°ā§āĻļ āĻ•āϰ⧇ āĻāĻŽāύ āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āϏāĻŽā§€āĻ•āϰāĻŖ āϕ⧋āύāϟāĻŋ?

    1. \(x^{2}+y^{2}+8 x-6 y+24=0\)
    2. \(x^{2}+y^{2}-8 x-6 y+24=0\)
    3. \(x^{2}+y^{2}+8 x+6 y+24=0\)
    4. \(x^{2}+y^{2}-8 x-6 y-24=0\)

    Ans. \(x^{2}+y^{2}-8 x-6 y+24=0\)

  6. \(\overrightarrow{\mathbf{b}}=6 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-6 \hat{k}\) āϭ⧇āĻ•ā§āϟāϰ āĻŦāϰāĻžāĻŦāϰ \(\overrightarrow{\mathbf{a}}=\mathbf{2} \hat{\mathbf{i}}-\mathbf{2} \hat{\mathbf{j}}+\hat{\mathbf{k}}\) āϭ⧇āĻ•ā§āϟāϰ⧇āϰ
    āωāĻĒāĻžāĻ‚āĻļ āĻšāϞ⧋-

    1. \(\frac{8}{121} \overrightarrow{\mathrm{b}}\)
    2. \(\frac{-8}{121} \overrightarrow{\mathrm{b}}\)
    3. \(\frac{8}{121} \overrightarrow{\mathrm{a}}\)
    4. \(\frac{-8}{121} \vec{a}\)

    Ans. \(\frac{-8}{121} \overrightarrow{\mathrm{b}}\)

  7. ‘GEOMETRY’ āĻļāĻŦā§āĻĻāϟāĻŋāϰ āĻŦāĻ°ā§āĻŖāϗ⧁āϞ⧋āϰ āϏāĻŦāϗ⧁āϞ⧋ āĻāĻ•āĻ¤ā§āϰ⧇ āύāĻŋāϝāĻŧ⧇āĨ¤
    āĻ•āϤ āĻĒā§āϰāĻ•āĻžāϰ⧇ āϏāĻžāϜāĻžāύ⧋ āϝāĻžāϝāĻŧ āϝ⧇āύ āĻĒā§āϰāĻĨāĻŽ āĻ“ āĻļ⧇āώ āĻ…āĻ•ā§āώāϰ ‘E’ āĻĨāĻžāϕ⧇?

    1. 360
    2. 20160
    3. 720
    4. 30

    Ans. 720

  8. \(\left(2 x+\frac{1}{8 x}\right)^{8}\) āĻāϰ āĻŦāĻŋāĻ¸ā§āϤ⧃āϤāĻŋāϤ⧇ x āĻŦāĻ°ā§āϜāĻŋāϤ āĻĒāĻĻ⧇āϰ āĻŽāĻžāύ āĻšāϞ⧋-
    1. \(\frac{70}{81}\)
    2. 520
    3. \(\frac{35}{128}\)
    4. \(\frac{7}{512}\)

    Ans. \(\frac{35}{128}\)

  9. \(25 x^{2}+16 y^{2}=400\) āωāĻĒāĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻ‰ā§Žāϕ⧇āĻ¨ā§āĻĻā§āϰāĻŋāĻ•āϤāĻž āĻ•āϤ?
    1. \(\frac{2}{3}\)
    2. \(\frac{4}{5}\)
    3. \(\frac{3}{4}\)
    4. \(\frac{3}{5}\)

    Ans. \(\frac{3}{5}\)

  10. \(\cot \left(\sin ^{-1} \frac{1}{2}\right)=?\)
    1. \(\frac{1}{\sqrt{3}}\)
    2. \(\frac{\sqrt{3}}{2}\)
    3. \(\sqrt{3}\)
    4. \(\frac{2}{\sqrt{3}}\)

    Ans. \(\sqrt{3}\)

  11. [0, 2] āĻŦā§āϝāĻŦāϧāĻŋāϤ⧇ \(y=x-1\) āĻāĻŦāĻ‚ \(\mathbf{y}=\mathbf{0}\) āϰ⧇āĻ–āĻž āĻĻā§āĻŦāĻžāϰāĻž āφāĻŦāĻĻā§āϧ
    āĻ…āĻžā§āϚāϞ⧇āϰ āĻŽā§‹āϟ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āĻ•āϤ?

    1. \(\int_{0}^{2}(x-1) d x\)
    2. \(\int_{0}^{2}|x-1| d x\)
    3. \(2 \int_{1}^{2}(1-x) d x\)
    4. \(2 \int_{0}^{1}(x-1) d x\)

    Ans. \(2 \int_{0}^{1}(x-1) d x\)

  12. \(\frac{1}{|3 x-1|}>1\) āĻāϰ āϏāĻŽāĻžāϧāĻžāύ āĻšāϞ⧋-

    1. \(\left(-\infty, \frac{1}{3}\right) \cup(1, \infty)\)
    2. \(x>\frac{1}{3}\)
    3. \(0< x<\frac{2}{3}\)
    4. \(\left(0, \frac{1}{3}\right) \cup\left(\frac{1}{3}, \frac{2}{3}\right)\)

    Ans. \(\left(0, \frac{1}{3}\right) \cup\left(\frac{1}{3}, \frac{2}{3}\right)\)

  13. \(\int \frac{d x}{\left(e^{x}+e^{-x}\right)^{2}}=?\)

    1. \(\frac{1}{2\left(\mathrm{e}^{2 \mathrm{x}}+1\right)}+\mathrm{c}\)
    2. \(\frac{-1}{2\left(\mathrm{e}^{2 \mathrm{x}}+1\right)}+\mathrm{c}\)
    3. \(\frac{1}{2 e^{2 x}}+c\)
    4. \(\frac{-1}{2 e^{2 x}}+c\)

    Ans. \(\frac{-1}{2\left(\mathrm{e}^{2 \mathrm{x}}+1\right)}+\mathrm{c}\)

  14. \(f(x)=\sqrt{2-\sqrt{2-x}}\) āĻāϰ āĻĄā§‹āĻŽā§‡āχāύ āĻšāϞ⧋-
    1. \((-\infty, 2)\)
    2. \((-\infty, \infty)\)
    3. \((-2, \infty)\)
    4. \([-2,2]\)

    Ans. \([-2,2]\)

  15. āϕ⧋āύ⧋ āĻāĻ•āϟāĻŋ āĻŦāĻŋāĻ¨ā§āĻĻ⧁āϤ⧇ āĻ•ā§āϰāĻŋāϝāĻŧāĻžāϰāϤ \(\overrightarrow{\mathbf{p}}\) āĻ“ \(2 \overrightarrow{\mathbf{p}}\) āĻŦāϞāĻĻā§āĻŦāϝāĻŧ⧇āϰ āϞāĻŦā§āϧāĻŋ \(\sqrt{7} \overrightarrow{\mathbf{p}}\)
    āĻšāϞ⧇, āϤāĻžāĻĻ⧇āϰ āĻŽāĻ§ā§āϝāĻŦāĻ°ā§āϤ⧀ āϕ⧋āĻŖ āĻ•āϤ?

    1. 30°
    2. 90°
    3. 60°
    4. 180°

    Ans. 60°

āĻœā§€āĻŦāĻŦāĻŋāĻœā§āĻžāĻžāύ

  1. āĻĒāύāĻŋāϰ āϤ⧈āϰāĻŋāϤ⧇ āĻŦā§āϝāĻŦāĻšā§ƒāϤ āĻāύāϜāĻžāχāĻŽā§‡āϰ āύāĻžāĻŽ-
    1. āĻĒ⧇āĻĒ⧇āχāύ
    2. āϰ⧇āύāĻŋāύ
    3. āĻ•ā§āϝāĻžāϟāĻžāϞ⧇āϜ
    4. āĻĒ⧇āĻ•āϟāĻŋāύ

    Ans. āϰ⧇āύāĻŋāύ

  2. āĻļāĻŋāĻ–āĻžāϕ⧋āώ āϝ⧇ āĻĒāĻ°ā§āĻŦ⧇āϰ āĻŦ⧈āĻļāĻŋāĻˇā§āĻŸā§āϝ?
    1. āφāĻĨā§āϰ⧋āĻĒā§‹āĻĄāĻž
    2. āĻ…ā§āϝāĻžāύāĻŋāϞāĻŋāĻĄāĻž
    3. āĻŽāϞāĻžāĻ¸ā§āĻ•āĻž
    4. āĻĒā§āϞāĻžāϟāĻŋāĻšā§‡āϞāĻŽāĻŋāύāĻĨ⧇āϏ

    Ans. āĻĒā§āϞāĻžāϟāĻŋāĻšā§‡āϞāĻŽāĻŋāύāĻĨ⧇āϏ

  3. āĻŽāĻžāύāĻŦāĻĻ⧇āĻšā§‡ āχāĻŽāĻŋāωāύ⧋āĻ—ā§āϞ⧋āĻŦāĻŋāύ⧇āϰ āĻ•āϤ āĻ­āĻžāĻ— IgG?
    1. 75%

    2. 15%

    3. 10%

    4. 5%

    Ans. 75%

  4. āϕ⧋āύāϟāĻŋ āĻĒāĻ¤ā§āϰāĻāϰāĻž āωāĻĻā§āĻ­āĻŋāĻĻ?
    1. Pongamia pinnat
    2. Heritiera fomes
    3. Shorea robusta
    4. Ceriops decandra

    Ans. Shorea robusta

  5. āϕ⧋āύ āĻšāϰāĻŽā§‹āύ⧇āϰ āĻ‰ā§ŽāϏ āĻĒāĻŋāϟ⧁āχāϟāĻžāϰāĻŋ āĻ—ā§āϰāĻ¨ā§āĻĨāĻŋ āύāϝāĻŧ?
    1. āĻ­ā§āϝāĻžāϏ⧋āĻĒā§āϰ⧇āϏāĻŋāύ
    2. āĻĒā§āϰ⧋āĻœā§‡āĻ¸ā§āĻŸā§‡āϰāύ
    3. āĻĒā§āϰ⧋āϞāĻžāĻ•ā§āϟāĻŋāύ
    4. āĻ…āĻ•ā§āϏāĻŋāϟāϏāĻŋāύ

    Ans. āĻĒā§āϰ⧋āĻœā§‡āĻ¸ā§āĻŸā§‡āϰāύ

  6. āĻŽāĻžāύāĻŦ āϜāĻŋāύ⧋āĻŽā§‡ āĻ•ā§āώāĻžāϰāĻ•-āϝ⧁āĻ—āϞ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž-
    1. ā§Š āĻŽāĻŋāϞāĻŋāϝāĻŧāύ
    2. ā§Šā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ
    3. ā§Šā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ
    4. ā§Šā§Ļā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ

    Ans. ā§Šā§Ļā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ

  7. āϕ⧋āύ āĻ…ā§āϝāĻžāĻŽāĻžāχāύ⧋ āĻāϏāĻŋāĻĄā§‡āϰ āϜāĻ¨ā§āϝ ā§ĒāϟāĻŋ āϕ⧋āĻĄ āϰāϝāĻŧ⧇āϛ⧇?
    1. āϞāĻŋāωāϏāĻŋāύ
    2. āφāϰāϜāĻŋāύāĻŋāύ
    3. āĻ­ā§āϝāĻžāϞāĻŋāύ
    4. āĻŸā§āϰāĻŋāĻĒāĻŸā§‹āĻĢ⧇āύ

    Ans. āĻ­ā§āϝāĻžāϞāĻŋāύ

  8. āϕ⧋āύ āωāĻĻā§āĻ­āĻŋāĻĻāϟāĻŋ āĻŦāĻžāĻ‚āϞāĻžāĻĻ⧇āĻļ⧇ āĻŦāĻŋāϞ⧁āĻĒā§āϤāĻĒā§āϰāĻžāϝāĻŧ?
    1. Pteris vittata
    2. Podocarpus nerifolia
    3. Cycas revoluta
    4. Nerium indicum

    Ans. Podocarpus nerifolia

  9. āϕ⧋āύ āĻ…āĻ™ā§āĻ—āĻžāϪ⧁āϤ⧇ āĻ…āĻ•ā§āϏāĻŋāϏ⧋āĻŽ āĻĻ⧇āĻ–āĻž āϝāĻžāϝāĻŧ?
    1. āĻŽāĻžāχāĻŸā§‹āĻ•āĻ¨ā§āĻĄā§āϰāĻŋāϝāĻŧāĻž
    2. āύāĻŋāωāĻ•ā§āϞāĻŋāϝāĻŧāĻžāϏ
    3. āϰāĻžāχāĻŦā§‹āϏ⧋āĻŽ
    4. āϞāĻžāχāϏ⧋āϏ⧋āĻŽ

    Ans. āĻŽāĻžāχāĻŸā§‹āĻ•āĻ¨ā§āĻĄā§āϰāĻŋāϝāĻŧāĻž

  10. Poaceae āĻ—ā§‹āĻ¤ā§āϰ⧇āϰ āωāĻĻā§āĻ­āĻŋāĻĻ⧇āϰ āĻĢāϞāϕ⧇ āĻŦāϞāĻž āĻšāϝāĻŧ-
    1. āĻŦ⧇āϰāĻŋ
    2. āĻ•ā§āϝāĻžāϰāĻŋāĻ“āĻĒāϏāĻŋāϏ
    3. āĻĒāĻĄ
    4. āĻ•ā§āϝāĻžāĻĒāϏ⧁āϞ

    Ans. āĻ•ā§āϝāĻžāϰāĻŋāĻ“āĻĒāϏāĻŋāϏ

  11. āĻŽāĻžāύ⧁āώ⧇āϰ āĻŽāĻ¸ā§āϤāĻŋāĻˇā§āĻ• āĻ“ āϏ⧁āώ⧁āĻŽā§āύāĻžāĻ•āĻžāĻŖā§āĻĄā§‡āϰ āφāĻŦāϰāĻŖ āϕ⧋āύāϟāĻŋ?
    1. āĻŽā§‡āύāĻŋāύāĻœā§‡āϏ
    2. āĻĒ⧇āϰāĻŋāĻŸā§‹āύāĻŋāϝāĻŧāĻžāĻŽ
    3. āĻĒ⧇āϰāĻŋāĻ•āĻžāϰāĻĄāĻŋāϝāĻŧāĻžāĻŽ
    4. āύāĻŋāωāϰ⧋āĻ•āĻžāϰāĻĄāĻŋāϝāĻŧāĻžāĻŽ

    Ans. āĻŽā§‡āύāĻŋāύāĻœā§‡āϏ

  12. āϕ⧋āύ āĻĒā§āϰāĻžāĻŖā§€āϤ⧇ āĻĒā§āĻ˛ā§āϝāĻžāĻ•āϝāĻŧ⧇āĻĄ āφāρāĻļ āϰāϝāĻŧ⧇āϛ⧇?
    1. āĻšāĻžāĻ™āϰ
    2. āϤāĻžāϰāĻžāĻŽāĻžāĻ›
    3. āĻ•āχāĻŽāĻžāĻ›
    4. āĻ•āĻžāϤāϞ āĻŽāĻžāĻ›

    Ans. āĻšāĻžāĻ™āϰ

  13. āĻ…ā§āϝāĻžāĻĄā§āϰ⧇āύāĻžāϞ āĻ—ā§āϰāĻ¨ā§āĻĨāĻŋ āĻĨ⧇āϕ⧇ āϕ⧋āύ āĻšāϰāĻŽā§‹āύ āύāĻŋāσāϏ⧃āϤ āĻšāϝāĻŧ?
    1. āϗ⧁āϕ⧋āĻ•āϰāϟāĻŋāĻ•āϝāĻŧ⧇āĻĄ
    2. āĻ—ā§‹āύāĻžāĻĄā§‹āĻŸā§āϰāĻĒāĻŋāύ
    3. āĻĒā§āϝāĻžāϰāĻžāĻĨāϰāĻŽā§‹āύ
    4. āĻ•ā§āϝāĻžāϞāϏāĻŋāϟāύāĻŋāύ

    Ans. āϗ⧁āϕ⧋āĻ•āϰāϟāĻŋāĻ•āϝāĻŧ⧇āĻĄ

  14. āϕ⧋āύāϟāĻŋāϰ āĻĒāϰāĻŋāĻŦāĻšāύāϤāĻ¨ā§āĻ¤ā§āϰ āφāϛ⧇, āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻĢ⧁āϞ āĻšāϝāĻŧ āύāĻž?
    1. āĻĨā§āϝāĻžāϞ⧋āĻĢāĻžāχāϟāĻž
    2. āĻŦā§āϰāĻžā§Ÿā§‹āĻĢāĻžāχāϟāĻž
    3. āĻŸā§‡āϰāĻŋāĻĄā§‹āĻĢāĻžāχāϟāĻž
    4. āĻ¸ā§āĻĒāĻžāϰāĻŽāĻžāĻŸā§‹āĻĢāĻžāχāϟāĻž

    Ans. āĻŸā§‡āϰāĻŋāĻĄā§‹āĻĢāĻžāχāϟāĻžāĨ¤

  15. āĻĒāϞāĻŋāϜāĻŋāύ āĻāϰ āĻĒā§āϰāĻ­āĻžāĻŦ-
    1. āϏāĻŽāĻĒā§āϰāĻ•āϟ
    2. āĻĒā§āϰāĻ•āϟ
    3. āĻĒā§āϰāĻšā§āĻ›āĻ¨ā§āύ
    4. āĻĒ⧁āĻžā§āĻœā§€āĻ­ā§‚āϤ

    Ans. āĻĒ⧁āĻžā§āĻœā§€āĻ­ā§‚āϤ

āĻŦāĻžāĻ‚āϞāĻž

  1. ‘āφāϜāĻŦ’ āĻļāĻŦā§āĻĻāϟāĻŋ āϕ⧋āύ āĻŦāĻŋāĻĻ⧇āĻļāĻŋ āĻļāĻŦā§āĻĻ?

    1. āφāϰāĻŦāĻŋ
    2. āĻĢāϰāĻžāϏāĻŋ
    3. āĻšāĻŋāĻ¨ā§āĻĻāĻŋ
    4. āωāĻ°ā§āĻĻ⧁

    Ans. āφāϰāĻŦāĻŋ

  2. āĻŖ-āĻ¤ā§āĻŦ āĻŦāĻŋāϧāĻžāύ āĻ…āύ⧁āϝāĻžāϝāĻŧā§€ āϕ⧋āύāϟāĻŋ āĻ…āĻļ⧁āĻĻā§āϧ?
    1. āĻĻ⧁āĻ°ā§āĻŖā§€āϤāĻŋ
    2. āĻĻāĻžāϰ⧁āĻŖ
    3. āĻŽā§‚āĻ˛ā§āϝāĻžāϝāĻŧāύ
    4. āĻŦāĻ°ā§āĻŖ

    Ans. āĻĻ⧁āĻ°ā§āĻŖā§€āϤāĻŋ

  3. ‘āĻŽāĻžāϏāĻŋ-āĻĒāĻŋāϏāĻŋ’ āĻ—āĻ˛ā§āĻĒ⧇ āφāĻšā§āϞāĻžāĻĻāĻŋāϰ āĻŽā§āϖ⧇ āϕ⧇ āĻĻ⧇āĻ–āϤ⧇ āĻĒāĻžāϝāĻŧ āύāĻŋāϜ āĻŽā§‡āϝāĻŧ⧇āϰ āĻŽā§āϖ⧇āϰ āĻ›āĻžāĻĒ?
    1. āĻ•ā§ˆāϞ⧇āĻļ
    2. āϜāϗ⧁
    3. āϰāĻšāĻŽāĻžāύ
    4. āĻ•āĻžāύāĻžāχ

    Ans. āϰāĻšāĻŽāĻžāύ

  4. ‘āĻŦāĻŋāĻ­ā§€āώāϪ⧇āϰ āĻĒā§āϰāϤāĻŋ āĻŽā§‡āϘāύāĻžāĻĻ’ āĻ•āĻŦāĻŋāϤāĻžāϝāĻŧ āĻ•āĻžāϕ⧇ āĻŦāĻžāϏāĻŦāĻ¤ā§āϰāĻžāϏ āĻŦāϞāĻž
    āĻšāϝāĻŧ⧇āϛ⧇?

    1. āĻŦāĻŋāĻ­ā§€āώāĻŖāϕ⧇
    2. āϰāĻžāĻŽāϕ⧇
    3. āϰāĻžāĻŦāĻŖāϕ⧇
    4. āĻŽā§‡āϘāύāĻžāĻĻāϕ⧇

    Ans. āĻŽā§‡āϘāύāĻžāĻĻāϕ⧇

  5. ‘āϏāĻŽā§āĻĻā§āϰ’ āĻļāĻŦā§āĻĻāϟāĻŋāϰ āĻĒā§āϰāϤāĻŋāĻļāĻŦā§āĻĻ-
    1. āϰāĻ¤ā§āύāĻžāĻ•āϰ
    2. āĻ…āĻŽā§āĻŦ⧁āϜ
    3. āϜāϞāĻĻ
    4. āĻŦāϰ⧁āĻŖ

    Ans. āϰāĻ¤ā§āύāĻžāĻ•āϰāĨ¤

  6. ‘āύ⧈āϝāĻŧāĻžāϝāĻŧāĻŋāĻ•’ āĻ•āĻžāϕ⧇ āĻŦāϞāĻž āĻšāϝāĻŧ?
    1. āύ⧀āϤāĻŋāĻŦāĻžāύāϕ⧇
    2. āϝāĻŋāύāĻŋ āĻ¨ā§āϝāĻžāϝāĻŧāĻļāĻžāĻ¸ā§āĻ¤ā§āϰ āϜāĻžāύ⧇āύ
    3. āĻĒāĻŖā§āĻĄāĻŋāϤāϕ⧇
    4. āϤāĻžāĻ°ā§āĻ•āĻŋāĻ•āϕ⧇

    Ans. āϝāĻŋāύāĻŋ āĻ¨ā§āϝāĻžāϝāĻŧāĻļāĻžāĻ¸ā§āĻ¤ā§āϰ āϜāĻžāύ⧇āύ

  7. āϕ⧋āύ āĻļāĻŦā§āĻĻāϗ⧁āĻšā§āĻ› āĻļ⧁āĻĻā§āϧ?
    1. āϏāĻŽā§€āĻšā§€āύ, āĻ•āĻŖā§āĻ , āĻŽāĻžāĻˇā§āϟāĻžāϰ
    2. āĻ…āĻ™ā§āϗ⧁āϞāĻŋ, āĻĻāĻ¨ā§āĻĄāύ⧀āϝāĻŧ, āĻ•āĻŋāĻ‚āĻ•āĻ°ā§āϤāĻŦā§āϝāĻŦāĻŋāĻŽā§āĻĸāĻŧ
    3. āĻĒā§āϰāϤāĻŋāϝ⧋āĻ—āĻŋāϤāĻž, āĻ¸ā§āĻŦāĻžāĻĻ⧇āĻļā§€āĻ•, āϏāĻ¨ā§āϤāϰāĻŖ
    4. āϏāĻšāϝ⧋āĻ—ā§€, āĻļāĻŋāϰāĻšā§āϛ⧇āĻĻ, āϗ⧁āĻžā§āϜāϰāύ

    Ans. āϏāĻšāϝ⧋āĻ—ā§€, āĻļāĻŋāϰāĻšā§āϛ⧇āĻĻ, āϗ⧁āĻžā§āϜāϰāύ

  8. ‘āĻŦ⧈āĻļāĻŋāĻˇā§āĻŸā§āĻ¯â€™ āĻļāĻŦā§āĻĻāϟāĻŋ āĻ—āĻ āĻŋāϤ āĻšāϝāĻŧ⧇āϛ⧇-
    1. āϏāĻ¨ā§āϧāĻŋāϝ⧋āϗ⧇
    2. āϏāĻŽāĻžāϏāϝ⧋āϗ⧇
    3. āĻĒā§āϰāĻ¤ā§āϝāϝāĻŧāϝ⧋āϗ⧇
    4. āωāĻĒāϏāĻ°ā§āĻ—āϝ⧋āϗ⧇

    Ans. āĻĒā§āϰāĻ¤ā§āϝāϝāĻŧāϝ⧋āϗ⧇

  9. ‘āφāĻ āĻžāϰ⧋ āĻŦāĻ›āϰ āĻŦāϝāĻŧāĻ¸â€™ āĻ•āĻŦāĻŋāϤāĻžāϰ āĻŽā§‚āϞāϏ⧁āϰ?
    1. āύ⧈āϤāĻŋāĻ•āϤāĻž
    2. āĻŦāĻŋāĻŦ⧇āĻ•āĻŦā§‹āϧ
    3. āĻ…āĻĻāĻŽā§āϝ āϤāĻžāϰ⧁āĻŖā§āϝāĻļāĻ•ā§āϤāĻŋ
    4. āĻ­ā§€āϰ⧁āϤāĻž

    Ans. āĻ…āĻĻāĻŽā§āϝ āϤāĻžāϰ⧁āĻŖā§āϝāĻļāĻ•ā§āϤāĻŋ

  10. āϕ⧋āύāϟāĻŋ āĻ§ā§āĻŦāĻ¨ā§āϝāĻžāĻ¤ā§āĻŽāĻ• āĻļāĻŦā§āĻĻ⧇āϰ āωāĻĻāĻžāĻšāϰāĻŖ?
    1. āĻļā§€āϤ-āĻļā§€āϤ
    2. āϘ⧁āĻŽ-āϘ⧁āĻŽ
    3. āĻœā§āĻŦāϰāĻœā§āĻŦāϰ
    4. āϟ⧁āĻĒāϟāĻžāĻĒ

    Ans. āϟ⧁āĻĒāϟāĻžāĻĒ

  11. āϕ⧋āύ āωāĻĒāϏāĻ°ā§āĻ—āϟāĻŋ āĻ­āĻŋāĻ¨ā§āύāĻžāĻ°ā§āĻĨ⧇ āĻĒā§āϰāϝ⧁āĻ•ā§āϤ?
    1. āĻĒā§āϰāϤāĻŋāĻĒāĻ•ā§āώ
    2. āĻĒā§āϰāϤāĻŋāĻĻā§āĻŦāĻ¨ā§āĻĻā§āĻŦā§€
    3. āĻĒā§āϰāϤāĻŋāĻŦāĻŋāĻŽā§āĻŦ
    4. āĻĒā§āϰāϤāĻŋāĻŦāĻžāĻĻ

    Ans. āĻĒā§āϰāϤāĻŋāĻŦāĻŋāĻŽā§āĻŦ

  12. ‘āϤ⧋āĻŽāĻžāϰ āĻ•āĻĨāĻžāϗ⧁āϞāĻŋ āĻ­āĻžāϰāĻŋ āϏ⧋āĻļāĻŋāϝāĻŧāĻžāϞāĻŋāĻ¸ā§āϟāĻŋāĻ•’āĨ¤ āĻ āωāĻ•ā§āϤāĻŋ āĻ•āĻžāϰ
    āωāĻĻā§āĻĻ⧇āĻļ⧇ āωāĻšā§āϚāĻžāϰāĻŋāϤ āĻšāϝāĻŧ⧇āϛ⧇?

    1. āĻ•āĻŽāϞāĻžāĻ•āĻžāĻ¨ā§āϤ
    2. āĻŦāĻ™ā§āĻ•āĻŋāĻŽāϚāĻ¨ā§āĻĻā§āϰ
    3. āĻŽāĻžāĻ°ā§āϜāĻžāϰ
    4. āĻĒā§āϰāϏāĻ¨ā§āύ

    Ans. āĻŽāĻžāĻ°ā§āϜāĻžāϰ

  13. āĻ•āĻžāϰāĻŽāĻžāχāϕ⧇āϞ⧇āϰ āĻ…āύ⧁āϏāĻ¨ā§āϧāĻžāύ⧇ āϰ⧇āĻļāĻŽāĻŋ āϰ⧁āĻŽāĻžāϞ āϤ⧈āϰāĻŋāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ āĻšāĻŋāϏ⧇āĻŦ⧇
    āϕ⧋āύ āĻāϞāĻžāĻ•āĻž āφāĻŦāĻŋāĻˇā§āĻ•ā§ƒāϤ āĻšāϝāĻŧ⧇āϛ⧇?

    1. āĻŦā§€āϰāĻ­ā§‚āĻŽ
    2. āĻŦāĻ°ā§āϧāĻŽāĻžāύ
    3. āϰāĻžāϜāĻļāĻžāĻšā§€
    4. āĻŽā§āĻ°ā§āĻļāĻŋāĻĻāĻžāĻŦāĻžāĻĻ

    Ans. āĻŽā§āĻ°ā§āĻļāĻŋāĻĻāĻžāĻŦāĻžāĻĻ

  14. āϕ⧋āύāϟāĻŋ āĻ…āĻĒāĻĒā§āĻ°ā§Ÿā§‹āϗ⧇āϰ āĻĻ⧃āĻˇā§āϟāĻžāĻ¨ā§āϤ?

    1. āĻĒ⧁āύāσāĻĒ⧁āύ
    2. āϭ⧌āĻ—āϞāĻŋāĻ•
    3. āĻ—ā§āϰāĻĨāĻŋāϤ
    4. āĻĒā§āϰ⧋āĻĨāĻŋāϤ

    Ans. āϭ⧌āĻ—āϞāĻŋāĻ•

  15. ‘āφāĻŽāĻžāϰ āĻĒāĻĨ’ āĻĒā§āϰāĻŦāĻ¨ā§āϧ⧇ āĻĒāĻĨāĻĒā§āϰāĻĻāĻ°ā§āĻļāĻ• āϕ⧇?
    1. āϧāĻ°ā§āĻŽ
    2. āϏāĻ¤ā§āϝ
    3. āĻĻ⧇āĻļ
    4. āύ⧇āϤāĻž

    Ans. āϏāĻ¤ā§āϝ

āχāĻ‚āϰ⧇āϜāĻŋ

English Read the following passage and answer the questions (1-5)
‘Bacteria’ is the common name of a very large group of one-celled microscopic organism that, we believe, may be the smallest, simplest and perhaps even the very first form of cellular life that evolved on earth. That is why they are observable only under a microscope. There are three main types of bacteria, which are classified according to their shape.
The bacilli are a group of bacteria that occur in the soil and air. They are shaped like rods. If we look at them under a microscope, we find them in motion, they always seem to be rolling or tumbling under the microscope. These bacilli are largely responsible for food spoilage. There is another group of bacteria who tend to grow in chains. They are referred to as the cocci group. A common example of this type is streptococci that causes strep throat. Finally, there is the spiral shaped bacteria called. They look a little like corkscrews, and they are responsible for a number of diseases in humans. Some species of bacteria cause diseases, but mostly bacteria live harmlessly on the skin, in the mouth, and the intestines. In fact, bacteria are very helpful to researchers. Bacteria cells resemble the cells of other life forms in many ways, and may be studied to give us insights.

  1. Which is the topic of this passage?
    1. Three major types of bacteria
    2. How microscopic organisms are mesured
    3. How bacteria is used for research in genetics
    4. Diseases caused by bacteria

    Ans. Three major types of bacteria

  2. A similar word for ‘tumble’is —
    1. order
    2. arrange
    3. organize
    4. spill

    Ans. spill

  3. According to the passage, bacilli are responsible for –
    1. polluting air
    2. causing throat diseases
    3. spoilling food
    4. spoilling soil

    Ans. spoilling food

  4. According to the text, which characteristic is common
    in bacteria?

    1. They have one cell
    2. They are harmful to humans
    3. They die quickly
    4. They die when exposed to air

    Ans. They have one cell

  5. Why are bacteria used in the research study?
    1. Bacteria live harmlessly
    2. Bacteria are similar to other life forms
    3. Bacteria cause many diseases
    4. Bacteria have cell formations

    Ans. Bacteria are similar to other life forms

  6. Fill in each blank with appropriate word/words
    (Question 6 -15)

  7. Nutritionists still do not understand the nutritional _____
    of jackfruits.

    1. favours
    2. helps
    3. goods
    4. benefits

    Ans. benefits

  8. A synonym for ‘compassion’ is _____
    1. indifference
    2. cruelty
    3. yearning
    4. heartlessness

    Ans. yearning

  9. As for _____, I prefer to let people make up _____ minds.

    1. myself, each other’s
    2. me, their own
    3. my, theirs
    4. mine, one another

    Ans. me, their own

  10. The noun of ‘excite’ is-
    1. excitable
    2. exciting
    3. excited
    4. excitement

    Ans. excitement

  11. Kalam found it hard to get up from bed after the alarm
    clock _____ at six a.m.

    1. sent out
    2. threw out
    3. went off
    4. took out

    Ans. went off

  12. Which one is the incorrect spelling?
    1. deportation
    2. depriciation
    3. denunciation
    4. denomination

    Ans. depriciation

  13. What is the antonym of ‘latent’?
    1. lurking
    2. hidden
    3. obvious
    4. concealed

    Ans. obvious

  14. Monir is sitting ______ the desk _____ front of the door.
    1. at, in
    2. in, on
    3. on, on
    4. at, at

    Ans. at, in

  15. Sleeplessness causes problems with our _____ clock.
    1. botanical
    2. biological
    3. natural
    4. rhythmical

    Ans. biological

  16. The person who has committed such an _____ crime must
    be severely punished.

    1. injurious
    2. unworthy
    3. uncharitable
    4. abominable

    Ans. abominable

āϞāĻŋāĻ–āĻŋāϤ āĻ…āĻ‚āĻļ (ā§§ā§§.⧍ā§Ģ x ā§Ē = ā§Ēā§Ģ)

āĻĒāĻĻāĻžāĻ°ā§āĻĨāĻŦāĻŋāĻœā§āĻžāĻžāύ

āĻĒā§āϰāĻļā§āύ-01. āϏāĻŽāĻŦ⧇āϗ⧇ āϚāϞāĻ¨ā§āϤ 2500 kg āĻ­āϰ⧇āϰ āĻāĻ•āϟāĻŋ āĻ—āĻžāĻĄāĻŧāĻŋ āĻŽāĻ¨ā§āĻĻāύ⧇āϰ āĻĢāϞ⧇
2500 m āĻĻā§‚āϰāĻ¤ā§āĻŦ āĻ…āϤāĻŋāĻ•ā§āϰāĻŽ āĻ•āϰāĻžāϰ āĻĒāϰ āĻĨ⧇āĻŽā§‡ āϗ⧇āϞāĨ¤ āĻ—āĻžāĻĄāĻŧāĻŋāϟāĻŋ āĻĨāĻžāĻŽāĻžāύ⧋āϰ āϜāĻ¨ā§āϝ āĻĒā§āϰāĻĻāĻ¤ā§āϤ āĻŦāϞ āĻāĻŦāĻ‚ āĻĨāĻžāĻŽāĻžāϰ āϏāĻŽāϝāĻŧ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāĨ¤


āϏāĻŽāĻžāϧāĻžāύ:

\(v^{2}=u^{2}-2 a s\)
\(\Rightarrow 0=(50)^{2}-2 \times \mathrm{a} \times 2500\)
\(\Rightarrow \mathrm{a}=0.5 \mathrm{~ms}^{-2}\)
\(\therefore \mathrm{v}=\mathrm{u}-\mathrm{at}\)
\(\Rightarrow 0=50-0.5 \times \mathrm{t}\)
\(\Rightarrow \mathrm{t}=100 \mathrm{~s}\) (Ans.)
\(\therefore \mathrm{F}=\mathrm{ma}=2500 \times 0.5=1250 \mathrm{~N}(\) Ans. \()\)
\(\mathrm{u}=50 \mathrm{~ms}^{-1}\)
\(\mathrm{~m}=2500 \mathrm{~kg}\)
\(\mathrm{~s}=2500 \mathrm{~m}\)
\(\mathrm{v}=0\)
\(\mathrm{~F}=?, \mathrm{t}=?\)

***āĻĒā§āϰāĻļā§āύāϟāĻŋāϰ āχāĻ‚āϰ⧇āϜāĻŋ āĻ­āĻžāĻ°ā§āϏāύ⧇ āφāĻĻāĻŋāĻŦ⧇āĻ— \(\mathbf{u}=\mathbf{5 0} \mathrm{ms}^{-1}\) āĻĻ⧇āĻ“āϝāĻŧāĻž āφāϛ⧇āĨ¤


āĻĒā§āϰāĻļā§āύ-02. āĻāĻ•āϜāύ āĻ•ā§āώ⧀āĻŖ āĻĻ⧃āĻˇā§āϟāĻŋāϏāĻŽā§āĻĒāĻ¨ā§āύ āĻŦā§āϝāĻ•ā§āϤāĻŋāϰ āĻšā§‹āϖ⧇āϰ āĻĻā§‚āϰ āĻŦāĻŋāĻ¨ā§āĻĻ⧁āϰ āĻĻā§‚āϰāĻ¤ā§āĻŦ 50 cmāĨ¤
āĻ•āĻŋ āϧāϰāύ⧇āϰ āĻāĻŦāĻ‚ āĻ•āϤ āĻ•ā§āώāĻŽāϤāĻžāϰ āϞ⧇āĻ¨ā§āϏ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāϞ⧇ āϤāĻžāϰ āĻšā§‹āϖ⧇āϰ āĻāχ āĻ•ā§āϰāϟāĻŋ āĻĻā§‚āϰ āĻšāĻŦ⧇?


āϏāĻŽāĻžāϧāĻžāύ:

\(\mathrm{P}=\frac{1}{\mathrm{u}}+\frac{1}{\mathrm{~V}}\)
\(\Rightarrow P=\frac{1}{\infty}+\frac{1}{(-0.5)}\)
\(\Rightarrow P=-2 \mathrm{D}\) āĻāĻŦāĻ‚ āĻ…āĻŦāϤāϞ āϞ⧇āĻ¨ā§āϏāĨ¤(Ans.)
\(\mathrm{u}=\infty\) (āĻ…āϏ⧀āĻŽ)
\(\mathrm{v}=-50 \mathrm{~cm}=-0.5 \mathrm{~m}\)
\(\mathrm{P}=?\)

āĻĒā§āϰāĻļā§āύ-03. āĻāĻ•āϟāĻŋ āĻŦāĻ¸ā§āϤ⧁ āϏāϰāϞ āĻĻā§‹āϞ āĻ—āϤāĻŋāϤ⧇ \(\mathbf{x}=6.0 \cos (6 \pi t+\pi) \mathrm{m}\)
āϏāĻŽā§€āĻ•āϰāĻŖ āĻ…āύ⧁āϝāĻžāϝāĻŧā§€ āĻĻ⧁āϞāϛ⧇āĨ¤ āĻŦāĻ¸ā§āϤ⧁āϰ āĻ—āϤāĻŋāϰ āĻ•āĻŽā§āĻĒāĻžāĻ™ā§āĻ• āĻ•āϤ? t = 2 s āϏāĻŽāϝāĻŧ⧇ āĻŦāĻ¸ā§āϤ⧁āϟāĻŋāϰ āĻŦ⧇āĻ— āĻ“ āĻ¤ā§āĻŦāϰāϪ⧇āϰ āĻŽāĻžāύ āĻ•āϤ?


āϏāĻŽāĻžāϧāĻžāύ:
\(x=6 \cos (6 \pi t+\pi)\) āϕ⧇
\(\mathrm{x}=\mathrm{A} \cos (\omega \mathrm{t}+\delta)\) āĻāϰ āϏāĻžāĻĨ⧇ āϤ⧁āϞāύāĻž āĻ•āϰ⧇ āĻĒāĻžāχ,
\(\omega=6 \pi \Rightarrow 2 \pi \mathrm{f}=6 \pi \Rightarrow \mathrm{f}=3 \mathrm{~Hz}\) (Ans.)
āĻŦ⧇āĻ—:
\(\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=-6 \sin (6 \pi \mathrm{t}+\pi)(6 \pi+0)\)
t=2s āϏāĻŽā§Ÿā§‡ āĻŦ⧇āĻ—, \(\mathrm{v}=-36 \pi \sin (6 \pi \mathrm{t}+\pi)\)
\(=-36 \pi \sin (12 \pi+\pi)\)
\(=0 \mathrm{~ms}^{-1}\) (Ans.)
āĻ¤ā§āĻŦāϰāĻŖ:
\(\mathrm{a}=\frac{\mathrm{d} \mathrm{v}}{\mathrm{dt}}=-36 \pi \cos (6 \pi \mathrm{t}+\pi)(6 \pi+0)\)
\(=-216 \pi^{2} \cos (6 \pi \mathrm{t}+\pi)\)
t=2s āϏāĻŽā§Ÿā§‡, \(a=-216 \pi^{2} \cos (12 \pi+\pi)\)
\(=-216 \pi^{2} \mathrm{~ms}^{-2}\) (Ans.)


āĻĒā§āϰāĻļā§āύ-04. āĻāĻ•āϟāĻŋ āĻ¸ā§āĻĨāĻŋāϰ āĻĨā§‹āϰāĻŋāϝāĻŧāĻžāĻŽ āύāĻŋāωāĻ•ā§āϞāĻŋāϝāĻŧāĻžāϏ (A = 220, Z = 90) āĻšāϤ⧇
\(\mathbf{E}_{\mathbf{0}}\) āĻ—āϤāĻŋāĻļāĻ•ā§āϤāĻŋāϰ āĻāĻ•āϟāĻŋ āφāϞāĻĢāĻž āĻ•āĻŖāĻž āύāĻŋāĻ°ā§āĻ—āϤ āĻšāϝāĻŧāĨ¤ āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϝāĻŧ āϰ⧇āĻĄāĻŋāϝāĻŧāĻžāĻŽ āύāĻŋāωāĻ•ā§āϞāĻŋāϝāĻŧāĻžāϏ⧇āϰ (A = 216, Z = 88) āĻ—āϤāĻŋāĻļāĻ•ā§āϤāĻŋāϰ āĻ•āϤ?


āϏāĻŽāĻžāϧāĻžāύ:
āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϟāĻŋ,
\({ }_{90}^{220} \mathrm{Th} \longrightarrow{ }_{88}^{216} \mathrm{Ra}+{ }_{2}^{4} \mathrm{He}+\) āĻ—āϤāĻŋāĻļāĻ•ā§āϤāĻŋ
\(E=m c^{2}\) āϏāĻŽā§āĻĒāĻ°ā§āĻ• āĻĨ⧇āϕ⧇ āĻĒāĻžāχ,
\(\mathrm{i} . \approx 205424 \mathrm{MeV}\left({ }_{90} \mathrm{Th}^{220}\right)\)
\(\mathrm{ii} . \approx 201000 \mathrm{MeV}\left({ }_{88}^{216} \mathrm{Ra}\right)\)
iii. \(\approx 3757 \mathrm{MeV}\left({ }_{2}^{4} \mathrm{He}\right)\)

āϏ⧁āϤāϰāĻžāĻ‚, \(205424 \rightarrow 201000+3757+\) āĻ—āϤāĻŋāĻļāĻ•ā§āϤāĻŋ āϝ⧇āĻšā§‡āϤ⧁ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻĻ⧁āĻĒāĻžāĻļ⧇āϰ āĻļāĻ•ā§āϤāĻŋ āϏāĻ‚āϰāĻ•ā§āώāĻŖāĻļā§€āϞ āύ⧀āϤāĻŋ āĻŽā§‡āύ⧇ āϚāϞ⧇, āϏ⧁āϤāϰāĻžāĻ‚ \(\approx 210 \times\) \(10^{3} \mathrm{MeV}\) āĻļāĻ•ā§āϤāĻŋ āĻšāĻŦ⧇ \({ }_{88} \mathrm{R}_{\mathrm{a}}\) āύāĻŋāωāĻ•ā§āϞāĻŋāϝāĻŧāĻžāϏ⧇āϰ āϜāĻ¨ā§āϝāĨ¤

āϰāϏāĻžāϝāĻŧāύ

05. \(\mathbf{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-92.38 \mathrm{~kJ}\)
āύāĻŋāĻŽā§āύ⧇ āĻĒā§āϰāĻĻāĻ¤ā§āϤ āĻĒā§āϰāĻļā§āύāϗ⧁āϞ⧋āϰ āωāĻ¤ā§āϤāϰ āĻĻāĻžāĻ“āĨ¤
(a) āϏāĻŽāϝāĻŧ⧇āϰ āϏāĻžāĻĨ⧇ \(\mathbf{N}_{\mathbf{2}}\) āĻ“ \(\mathbf{N H}_{3}\) āĻāϰ āĻĒāϰāĻŋāĻŽāĻžāϪ⧇āϰ āĻĒāϰāĻŋāĻŦāĻ°ā§āϤāύ āϚāĻŋāĻ¤ā§āϰ⧇ āĻĻ⧇āĻ–āĻžāĻ“āĨ¤ āωāĻ­āϝāĻŧ⧇āϰ āϏāĻžāĻĒ⧇āĻ•ā§āώ⧇ āϏāĻŽā§āĻŽā§āĻ– āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϰ āĻšāĻžāϰ āϞ⧇āĻ–āĨ¤


āωāĻ¤ā§āϤāϰ : āϏāĻŽāϝāĻŧ⧇āϰ āϏāĻžāĻĨ⧇ \(\mathbf{N}_{\mathbf{2}}\) āĻ“ \(\mathbf{N H}_{3}\) āĻāϰ āĻĒāϰāĻŋāĻŽāĻžāϪ⧇āϰ āĻĒāϰāĻŋāĻŦāĻ°ā§āϤāύ⧇āϰ āϚāĻŋāĻ¤ā§āϰ :


\(\mathrm{N}_{2}\) āĻāϰ āϏāĻžāĻĒ⧇āĻ•ā§āώ⧇ āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϰ āĻšāĻžāϰ \(=\mathrm{K} \times\left[\mathrm{N}_{2}\right] \times\left[\mathrm{H}_{2}\right]^{3}\)

\(\mathrm{NH}_{3}\) āĻāϰ āϏāĻžāĻĒ⧇āĻ•ā§āώ⧇ āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϰ āĻšāĻžāϰ \(=\mathrm{K} \times\left[\mathrm{NH}_{3}\right]^{2}\)



(b) āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϟāĻŋāϰ āϏāĻžāĻŽā§āϝāĻžāĻŦāĻ¸ā§āĻĨāĻžāϰ āωāĻĒāϰ āϤāĻžāĻĒ āĻ“ āϚāĻžāĻĒ⧇āϰ āĻĒā§āϰāĻ­āĻžāĻŦ āϕ⧀ āĻšāĻŦ⧇?


āωāĻ¤ā§āϤāϰ :
\(\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})\) \(\Delta \mathrm{H}=-92.38 \mathrm{KJ}\)

āϤāĻžāĻĒāĻŽāĻžāĻ¤ā§āϰāĻžāϰ āĻĒā§āϰāĻ­āĻžāĻŦ : āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϟāĻŋ āϤāĻžāĻĒā§‹ā§ŽāĻĒāĻžāĻĻā§€āĨ¤ āϞāĻž āĻļā§āϝāĻžāϤ⧇āϞāĻŋāϝāĻŧāĻžāϰ āύ⧀āϤāĻŋ āĻ…āύ⧁āϏāĻžāϰ⧇ āϤāĻžāĻĒāĻŽāĻžāĻ¤ā§āϰāĻž āĻŦ⧃āĻĻā§āϧāĻŋāϤ⧇ āϏāĻŽā§āĻŽā§āĻ– āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϰ āĻšāĻžāϰ āĻšā§āϰāĻžāϏ āĻĒāĻžāϝāĻŧāĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž āĻ‰ā§ŽāĻĒāĻžāĻĻāύ āĻšā§āϰāĻžāϏ āĻĒāĻžāϝāĻŧāĨ¤
āϚāĻžāĻĒ⧇āϰ āĻĒā§āϰāĻ­āĻžāĻŦ : āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϝāĻŧ āφāϝāĻŧāϤāύ⧇āϰ āĻšā§āϰāĻžāϏ āϘāĻŸā§‡ āĻŦāϞ⧇ āϚāĻžāĻĒ āĻŦ⧃āĻĻā§āϧāĻŋāϤ⧇ āϏāĻŽā§āĻŽā§āĻ– āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϰ āĻšāĻžāϰ āĻŦ⧃āĻĻā§āϧāĻŋ āĻĒāĻžāϝāĻŧ āĻ…āĻ°ā§āĻĨāĻžā§Ž āĻ‰ā§ŽāĻĒāĻžāĻĻāύ āĻŦāĻžāĻĄāĻŧ⧇āĨ¤



(c) āϏāĻžāĻŽā§āϝāĻžāĻŦāĻ¸ā§āĻĨāĻž āĻ§ā§āϰ⧁āĻŦāĻ• (K) āĻāϰ āωāĻĒāϰ āĻĒā§āϰāĻ­āĻžāĻŦāϕ⧇āϰ āϕ⧋āύ āĻĒā§āϰāĻ­āĻžāĻŦ
āϰāϝāĻŧ⧇āϛ⧇ āϕ⧀?


āωāĻ¤ā§āϤāϰ : āϏāĻžāĻŽā§āϝāĻžāĻŦāĻ¸ā§āĻĨāĻž āĻ§ā§āϰ⧁āĻŦāϕ⧇āϰ (K) āωāĻĒāϰ āĻĒā§āϰāĻ­āĻžāĻŦāϕ⧇āϰ āϕ⧋āύ⧋ āĻĒā§āϰāĻ­āĻžāĻŦ āύ⧇āχ āĨ¤



06. (a) āĻŦā§‹āϰ āĻŽāĻĄā§‡āϞ āĻ…āύ⧁āϏāĻžāϰ⧇ āĻšāĻžāχāĻĄā§āϰ⧋āϜāύ āĻŽā§ŒāϞ⧇āϰ āĻŦāĻŋāĻ•āĻŋāϰāĻŖ āĻŦāĻ°ā§āĻŖāĻžāϞāĻŋāϰ
āĻ‰ā§ŽāĻĒāĻ¤ā§āϤāĻŋ āϚāĻŋāĻ¤ā§āϰ⧇āϰ āϏāĻžāĻšāĻžāĻ¯ā§āϝ⧇ āĻĻ⧇āĻ–āĻžāĻ“āĨ¤


āωāĻ¤ā§āϤāϰ : āϝāĻ–āύ āχāϞ⧇āĻ•ā§āĻŸā§āϰāύ āύāĻŋāĻŽā§āύ āĻļāĻ•ā§āϤāĻŋāĻ¸ā§āϤāϰ āĻšāϤ⧇ āωāĻšā§āϚ āĻļāĻ•ā§āϤāĻŋāĻ¸ā§āĻŦāϰ⧇ āϞāĻžāĻĢāĻŋāϝāĻŧ⧇ āϚāϞ⧇ āϤāĻ–āύ āφāϞ⧋āĻ• āĻļāĻ•ā§āϤāĻŋāϰ āĻļā§‹āώāĻŖ āĻāĻŦāĻ‚ āϝāĻ–āύ āωāĻšā§āϚ āĻļāĻ•ā§āϤāĻŋāĻ¸ā§āϤāϰ āĻšāϤ⧇ āύāĻŋāĻŽā§āύ āĻļāĻ•ā§āϤāĻŋāĻ¸ā§āϤāϰ⧇ āϞāĻžāĻĢāĻŋāϝāĻŧ⧇ āϚāϞ⧇, āϤāĻ–āύ āφāϞ⧋āĻ• āĻļāĻ•ā§āϤāĻŋāϰ āĻŦāĻŋāĻ•āĻŋāϰāĻŖ āϘāĻŸā§‡āĨ¤ āϝāĻĻāĻŋ āĻĒā§āϰāĻĨāĻŽ āĻ•āĻ•ā§āώāĻĒāĻĨ⧇ āχāϞ⧇āĻ•ā§āĻŸā§āϰāύ⧇āϰ āĻļāĻ•ā§āϤāĻŋ \(\mathrm{E}_{1}\) āĻāĻŦāĻ‚ āĻĻā§āĻŦāĻŋāϤ⧀āϝāĻŧ āĻ•āĻ•ā§āώāĻĒāĻĨ⧇ āχāϞ⧇āĻ•ā§āĻŸā§āϰāύ⧇āϰ āĻļāĻ•ā§āϤāĻŋ \(\mathrm{E}_{2}\) āĻšāϝāĻŧ, āϤāĻŦ⧇ āĻŦāĻŋāĻ•āĻŋāϰāĻŋāϤ āφāϞ⧋āϰ āĻļāĻ•ā§āϤāĻŋ āĻšāĻŦ⧇ \(\Delta \mathrm{E}=\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right)\)āĨ¤ āĻāχ āĻļāĻ•ā§āϤāĻŋ āϤāĻĄāĻŧāĻŋā§Ž āϚ⧁āĻŽā§āĻŦāϕ⧀āϝāĻŧ āĻŦāĻŋāĻ•āĻŋāϰāĻŖ āĻšāĻŋāϏ⧇āĻŦ⧇ āύāĻŋāĻ°ā§āĻ—āϤ āĻšāĻŦ⧇ āĨ¤

āϚāĻŋāĻ¤ā§āϰ: āĻŦā§‹āϰ⧇āϰ āĻĒāϰāĻŽāĻžāϪ⧁ āĻŽāĻĄā§‡āϞ āĻ“ āϰ⧇āĻ–āĻž āĻŦāĻ°ā§āĻŖāĻžāϞāĻŋāϰ āĻ‰ā§ŽāϏāĨ¤



(b) āĻšāĻžāχāĻĄā§āϰ⧋āĻœā§‡āύ āĻŦāĻŋāĻ•āĻŋāϰāĻŖ āĻŦāĻ°ā§āĻŖāĻžāϞāĻŋāϰ āĻĒāĻžāρāϚāϟāĻŋ āĻŦāĻ°ā§āĻŖāĻžāϞāĻŋ āϏāĻžāϰāĻŋāϰ āύāĻžāĻŽ āϞ⧇āĻ–āĨ¤


āωāĻ¤ā§āϤāϰ :

  1. āϞāĻžāχāĻŽā§āϝāĻžāύ āϏāĻŋāϰāĻŋāϜ (Lymen Series)
  2. āĻŦāĻžāĻŽāĻžāϰ āϏāĻŋāϰāĻŋāϜ (Balmer Series)
  3. āĻĒā§āϝāĻžāĻļā§āĻšā§‡āύ āϏāĻŋāϰāĻŋāϜ (Paschen Series)
  4. āĻŦā§āϰāĻžāϕ⧇āϟ āϏāĻŋāϰāĻŋāϜ (Brackett Series)
  5. āĻĢ⧁āĻĄ āϏāĻŋāϰāĻŋāϜ (Pfund Series)

(c) āĻŦā§‹āϰ āĻŽāĻĄā§‡āϞ āĻāϰ āĻĻ⧁āϟāĻŋ āϏ⧀āĻŽāĻžāĻŦāĻĻā§āϧāϤāĻž āϞ⧇āĻ–?


āωāĻ¤ā§āϤāϰ :

  1. āĻŦā§‹āϰ āĻŽāĻĄā§‡āϞ H āĻĒāϰāĻŽāĻžāϪ⧁ āĻ“ āĻāĻ•āĻ• āχāϞ⧇āĻ•ā§āĻŸā§āϰāύāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āφāϝāĻŧāύāϗ⧁āϞ⧋āϰ (āϝ⧇āĻŽāύ: \(\mathrm{He}^{+}, \mathrm{Li}^{2+}\)) āĻŦāĻ°ā§āĻŖāĻžāϞāĻŋāϰ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž āĻ•āϰāϤ⧇ āĻĒāĻžāϰāϞ⧇āĻ“ āĻāĻ•āĻžāϧāĻŋāĻ• āχāϞ⧇āĻ•ā§āĻŸā§āϰāύāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āĻĒāϰāĻŽāĻžāϪ⧁āϗ⧁āϞ⧋āϰ āĻŦāĻ°ā§āĻŖāĻžāϞāĻŋāϰ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž āĻ•āϰāϤ⧇ āĻĒāĻžāϰ⧇ āύāĻžāĨ¤
  2. āĻāĻ• āĻļāĻ•ā§āϤāĻŋāĻ¸ā§āϤāϰ āĻšāϤ⧇ āĻ…āĻĒāϰ āĻļāĻ•ā§āϤāĻŋāĻ¸ā§āϤāϰ⧇ āχāϞ⧇āĻ•ā§āĻŸā§āϰāύ⧇āϰ āĻ¸ā§āĻĨāĻžāύāĻžāĻ¸ā§āϤāϰ āϘāϟāϞ⧇, āĻŦā§‹āϰ āĻĒāϰāĻŽāĻžāϪ⧁ āĻŽāĻĄā§‡āϞ āĻ…āύ⧁āϏāĻžāϰ⧇ āĻāĻ•āϟāĻŋ āϰ⧇āĻ–āĻž āĻŦāĻ°ā§āĻŖāĻžāϞāĻŋāϰ āϏ⧃āĻˇā§āϟāĻŋ āĻšāĻ“āϝāĻŧāĻžāϰ āĻ•āĻĨāĻž āĨ¤ āĻ•āĻŋāĻ¨ā§āϤ⧁ āωāĻšā§āϚ āĻ•ā§āώāĻŽāϤāĻžāϰ āĻ¸ā§āĻĒ⧇āĻ•āĻŸā§āϰ⧋āĻ¸ā§āϕ⧋āĻĒ āĻĻā§āĻŦāĻžāϰāĻž āĻĒāϰ⧀āĻ•ā§āώāĻžāϝāĻŧ āĻĻ⧇āĻ–āĻž āϝāĻžāϝāĻŧ, āĻĒā§āϰāϤāĻŋāϟāĻŋ āĻŦāĻ°ā§āĻŖāĻžāϞāĻŋ āϰ⧇āĻ–āĻž āĻ•āϝāĻŧ⧇āĻ•āϟāĻŋ āϏ⧂āĻ•ā§āĻˇā§āĻŽ āϰ⧇āĻ–āĻž āĻĻā§āĻŦāĻžāϰāĻž āĻ—āĻ āĻŋāϤāĨ¤ āĻŦā§‹āϰ
    āĻŽāĻĄā§‡āϞ āĻāϏāĻŦ āϏ⧂āĻ•ā§āĻˇā§āĻŽ āϰ⧇āĻ–āĻž āĻ‰ā§ŽāĻĒāĻ¤ā§āϤāĻŋāϰ āĻ•āĻžāϰāĻŖ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž āĻ•āϰāϤ⧇ āĻĒāĻžāϰ⧇ āύāĻž āĨ¤

07. (a) āĻŦ⧇āύāϜāĻŋāύ⧇āϰ āĻ…ā§āϝāĻžāϞāĻ•āĻžāχāϞāĻŋāĻ•āϰāϪ⧇ āĻŦā§āϝāĻŦāĻšā§ƒāϤ āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϟāĻŋāϰ āύāĻžāĻŽ
āĻ•āĻŋ? āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϟāĻŋ āϞ⧇āĻ– āĻ“ āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻž āĻ•ā§ŒāĻļāϞ āĻĻ⧇āĻ–āĻžāĻ“āĨ¤


āωāĻ¤ā§āϤāϰ : āĻŦ⧇āύāϜāĻŋāύ⧇āϰ āĻ…ā§āϝāĻžāϞāĻ•āĻžāχāϞāĻŋāĻ•āϰāϪ⧇āϰ āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϟāĻŋāϰ āύāĻžāĻŽ āĻĢā§āϰāĻŋāĻĄā§‡āϞ āĻ•ā§āϰāĻžāĻĢāϟ āĻ…ā§āϝāĻžāϞāĻ•āĻžāχāϞ⧇āĻļāύ āĨ¤ āĻ āĻĒāĻĻā§āϧāϤāĻŋāϤ⧇ āĻŦ⧇āύāϜāĻŋāύ āĻŦāϞāϝāĻŧ⧇ āĻ…ā§āϝāĻžāϞāĻ•āĻžāχāϞ āĻŽā§‚āϞāĻ• (āϝ⧇āĻŽāύ: \(\mathrm{CH}_{3}^{+}\)), āϏāϰāĻžāϏāϰāĻŋ āĻĒā§āϰāĻŦ⧇āĻļ āĻ•āϰāĻžāύ⧋ āĻšāϝāĻŧāĨ¤ āĻ…āύāĻžāĻ°ā§āĻĻā§āϰ \(\mathrm{AlCl}_{3}\) āĻāϰ āωāĻĒāĻ¸ā§āĻĨāĻŋāϤāĻŋāϤ⧇ āĻŦ⧇āύāϜāĻŋāύ āĻ“ āĻŽāĻŋāĻĨāĻžāχāϞ āĻ•ā§āϞ⧋āϰāĻžāχāĻĄ āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻž āĻ•āϰ⧇ āĻŽāĻŋāĻĨāĻžāχāϞ āϕ⧇āύāϜāĻŋāύ āĻŦāĻž āϟāϞ⧁āχāύ āĻ‰ā§ŽāĻĒāĻ¨ā§āύ āĻ•āϰ⧇āĨ¤

āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻž āĻ•ā§ŒāĻļāϞ :



(b) 1-āĻŦāĻŋāωāϟāĻžāύāϞ āĻāϰ āĻāĻ•āϟāĻŋ āĻ…āĻĒāϏāĻžāϰāĻŖ āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻž āϞ⧇āĻ–āĨ¤


āωāĻ¤ā§āϤāϰ : āχāϞ⧇āĻ•ā§āĻŸā§āϰ⧇āĻĢāĻŋāϞāĻŋāĻ• āĻ…āĻĒāϏāĻžāϰāĻŖ :
\(\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4} \stackrel{\Delta}{\longrightarrow} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}\)
āĻ…ā§āϝāĻžāϞāĻ•āĻŋāύ



08. (a) āϤ⧇āϞ āĻŦāĻž āϚāĻ°ā§āĻŦāĻŋāϰ āĻ“ āϏāĻžāĻŦāĻžāύ⧇āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻ‚āϕ⧇āϤ āϞ⧇āĻ– āĨ¤ āϤ⧇āϞ āĻ“
āϚāĻ°ā§āĻŦāĻŋāϰ āĻŽāĻ§ā§āϝ⧇ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ āĻĨāĻžāĻ•āϞ⧇ āϤāĻž āϞ⧇āĻ–?


āωāĻ¤ā§āϤāϰ : āϤ⧇āϞ āĻŦāĻž āϚāĻ°ā§āĻŦāĻŋāϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻ‚āϕ⧇āϤ:

āϏāĻžāĻŦāĻžāύ⧇āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻ‚āϕ⧇āϤ :

\(\mathrm{R}-\mathrm{COO}-\mathrm{Na}^{+}\)
āϤ⧇āϞ āĻ“ āϚāĻ°ā§āĻŦāĻŋāϰ āĻŽāĻ§ā§āϝ⧇ āĻĒāĻžāĻĨāĻ°ā§āĻ•: āϤ⧇āϞ āĻ“ āϚāĻ°ā§āĻŦāĻŋ āĻĻ⧁āĻŸā§‹āχ āĻŸā§āϰāĻžāχāĻ—ā§āϞāĻŋāϏāĻžāϰāĻžāχāĻĄāĨ¤ āĻ•āĻŋāĻ¨ā§āϤ⧁ āϤ⧇āϞ āĻ“ āϚāĻ°ā§āĻŦāĻŋ āĻ—āĻ āύāĻ•āĻžāϰ⧀ āĻĢā§āϝāĻžāϟāĻŋ āĻāϏāĻŋāĻĄā§‡āϰ āĻ…āϏāĻŽā§āĻĒ⧃āĻ•ā§āϤ āĻ•āĻžāĻ°ā§āĻŦāύ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ āĻĨāĻžāϕ⧇ āĨ¤ āϤ⧇āϞ āĻ•āĻ•ā§āώ āϤāĻžāĻĒāĻŽāĻžāĻ¤ā§āϰāĻžāϝāĻŧ āϤāϰāϞ āĻ“ āϚāĻ°ā§āĻŦāĻŋ āĻ•āĻ•ā§āώāϤāĻžāĻĒāĻŽāĻžāĻ¤ā§āϰāĻžāϝāĻŧ āĻ•āĻ āĻŋāύ āĻšāϝāĻŧāĨ¤ āϤ⧇āϞ āϏāĻžāϧāĻžāϰāĻŖāϤ āωāĻĻā§āĻ­āĻŋāĻĻ āĻĨ⧇āϕ⧇ āφāĻšāϰāĻŋāϤ āĻšāϝāĻŧ āĻ“ āϚāĻ°ā§āĻŦāĻŋ āϏāĻžāϧāĻžāϰāĻŖāϤ āĻĒā§āϰāĻžāĻŖā§€ āĻĨ⧇āϕ⧇ āφāĻšāϰāĻŋāϤ āĻšāϝāĻŧāĨ¤


(b) āϕ⧇āϰ⧋āϏāĻŋāύ āĻ“ āϏāϝāĻŧāĻžāĻŦāĻŋāύ āϤ⧇āϞ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ āĻĨāĻžāĻ•āϞ⧇ āϤāĻž āϞ⧇āĻ–?


āωāĻ¤ā§āϤāϰ : āĻ…āĻĒāϰāĻŋāĻļā§‹āϧāĻŋāϤ āĻĒ⧇āĻŸā§āϰ⧋āϞāĻŋāϝāĻŧāĻžāĻŽā§‡āϰ āφāĻ‚āĻļāĻŋāĻ• āĻĒāĻžāϤāύ⧇āϰ āϏāĻžāĻšāĻžāϝ⧇ āϕ⧇āϰ⧋āϏāĻŋāύ āĻĒāĻžāĻ“āϝāĻŧāĻž āϝāĻžāϝāĻŧāĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž āĻāϟāĻŋ āĻĒ⧇āĻŸā§āϰ⧋āϞāĻŋāϝāĻŧāĻžāĻŽā§‡āϰ āĻ…āĻ‚āĻļ āĨ¤ āĻāĻ–āĻžāύ⧇ āĻŦāĻŋāĻ­āĻŋāĻ¨ā§āύ āĻšāĻžāχāĻĄā§āϰ⧋āĻ•āĻžāĻ°ā§āĻŦāύ⧇āϰ āϏāĻ‚āĻŽāĻŋāĻļā§āϰāĻŖ āĻĨāĻžāϕ⧇āĨ¤ āĻ…āĻĒāϰāĻĻāĻŋāϕ⧇, āϏāϝāĻŧāĻžāĻŦāĻŋāύ āϤ⧇āϞ āĻāĻ•āϟāĻŋ āωāĻĻā§āĻ­āĻŋāĻĻ āϤ⧇āϞ, āĻāĻ–āĻžāύ⧇ āĻŽā§‚āϞāϤ āĻ…āĻ¸ā§āĻĒ⧃āĻ•ā§āϤ āĻšāĻžāχāĻĄā§āϰ⧋āĻ•āĻžāĻ°ā§āĻŦāύ āĻĨāĻžāϕ⧇āĨ¤

āĻ—āĻŖāĻŋāϤ

09. āϝāĻĻāĻŋ \(f(x)=-\sqrt{x-1}\) āĻāϰ āĻŦāĻŋāĻĒāϰ⧀āϤ āĻĢāĻžāĻ‚āĻļāύ \(\mathbf{f}^{-1}(\mathbf{x})\) āĻšāϝāĻŧ āϤāĻŦ⧇
āĻĻ⧇āĻ–āĻžāĻ“ āϝ⧇, \(\mathbf{f}\left(\mathbf{f}^{-1}(\mathbf{x})\right)=\mathbf{f}^{-1}(\mathbf{f}(\mathbf{x}))\)


āϏāĻŽāĻžāϧāĻžāύ : \(f(x)=-\sqrt{x-1}\)
āϧāϰāĻŋ, \(f(x)=y \Rightarrow x=f^{-1}(y)\)
\(\therefore y=-\sqrt{x-1} \Rightarrow y^{2}=x-1 \Rightarrow x=y^{2}+1 \Rightarrow f^{-1}(y)=y^{2}+1\)
\(\therefore \mathrm{f}^{-1}(\mathrm{x})=\mathrm{x}^{2}+1\)
\(\therefore \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{x})\right)=-\sqrt{\mathrm{x}^{2}+1-1}=\mathrm{x} ; \mathrm{x}<0\)
āφāĻŦāĻžāϰ,\(f(x)=-\sqrt{x-1}\)
\(\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=(-\sqrt{\mathrm{x}-1})^{2}+1=\mathrm{x}-1+1=\mathrm{x}\)
\(\therefore \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{x})\right)=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))\)
[Showed]


10. \(1+\frac{3}{1 !}+\frac{5}{2 !}+\frac{7}{3 !}+\ldots \ldots\) āϧāĻžāϰāĻžāϟāĻŋāϰ āϝ⧋āĻ—āĻĢāϞ āĻŦ⧇āϰ āĻ•āϰāĨ¤


āϏāĻŽāĻžāϧāĻžāύ : \(1+\frac{3}{1 !}+\frac{5}{2 !}+\frac{7}{3 !}+\ldots .\)
āϧāϰāĻŋ,
\(U_{r}=\frac{2 r-1}{(r-1) !}=\frac{2 r-2+1}{(r-1) !}\)
\(=\frac{2(r-1)}{(r-1) !}+\frac{1}{(r-1) !}=\frac{2}{(r-2) !}+\frac{1}{(r-1) !}\)
\(\therefore \mathrm{S}_{\mathrm{n}}=\sum \mathrm{U}_{\mathrm{r}}=2 \sum \frac{1}{(\mathrm{r}-2) !}+\sum \frac{1}{(\mathrm{r}-1) !}=2 \mathrm{e}+\mathrm{e}=3 \mathrm{e}\)


11. x = 2, x = 4, y = 4 āĻāĻŦāĻ‚ y = 6 āϰ⧇āĻ–āĻž āĻĻā§āĻŦāĻžāϰāĻž āĻ—āĻ āĻŋāϤ āĻŦāĻ°ā§āĻ—āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ
āĻ•āĻ°ā§āĻŖāĻĻā§āĻŦāϝāĻŧ⧇āϰ āϏāĻŽā§€āĻ•āϰāĻŖ āĻŦ⧇āϰ āĻ•āϰāĨ¤

āϏāĻŽāĻžāϧāĻžāύ :


AC āĻ•āĻ°ā§āϪ⧇āϰ āϏāĻŽā§€āĻ•āϰāĻŖ,
\(\frac{x-2}{2-4}=\frac{y-4}{4-6}\)
\(\Rightarrow \frac{x-2}{-2}=\frac{y-4}{-2}\)
\(\Rightarrow x-y+2=0\) (Ans).
BD āĻ•āĻ°ā§āϪ⧇āϰ āϏāĻŽā§€āĻ•āϰāĻŖ,
\(\frac{x-4}{4-2}=\frac{y-4}{4-6} \Rightarrow \frac{x-4}{2}=\frac{y-4}{-2} \Rightarrow x+y-8=0\) (Ans)



12. āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰ: \(\sin \theta+\sin 2 \theta+\sin 3 \theta=1+\cos \theta+\cos 2 \theta\)


āϏāĻŽāĻžāϧāĻžāύ:
\(\sin \theta+\sin 2 \theta+\sin 3 \theta=1+\cos \theta+\cos 2 \theta\)
\(\Rightarrow \sin 3 \theta+\sin \theta+\sin 2 \theta=1+\cos 2 \theta+\cos \theta\)
\(\Rightarrow 2 \sin \frac{3 \theta+\theta}{2} \cos \frac{3 \theta-\theta}{2}+\sin 2 \theta=2 \cos ^{2} \theta+\cos \theta\)
\(\Rightarrow 2 \sin 2 \theta \cos \theta+\sin 2 \theta=2 \cos ^{2} \theta+\cos \theta\)
\(\Rightarrow \sin 2 \theta(2 \cos \theta+1)=\cos \theta(2 \cos \theta+1)\)
\(\Rightarrow \sin 2 \theta(2 \cos \theta+1)-\cos \theta(2 \cos \theta+1)=0\)
\(\Rightarrow(2 \cos \theta+1)(\sin 2 \theta-\cos \theta)=0\)
āĻšā§Ÿ, \(2 \cos \theta+1=0 \Rightarrow 2 \cos \theta=-1\)
\(\Rightarrow \cos \theta=-\frac{1}{2}=\cos \frac{2 \pi}{3} \Rightarrow \theta=2 n \pi \pm \frac{2 \pi}{3}\)
āĻ…āĻĨāĻŦāĻž, \(\sin 2 \theta-\cos \theta=0 \Rightarrow 2 \sin \theta \cos \theta-\cos \theta=0\)
\(\Rightarrow \cos \theta(2 \sin \theta-1)=0 \therefore \cos \theta=0 \Rightarrow \theta=(2 \mathrm{n}+1) \frac{\pi}{2}\)
āĻ…āĻĨāĻŦāĻž, \(2 \sin \theta-1=0 \Rightarrow 2 \sin \theta=1 \Rightarrow \sin \theta=\frac{1}{2}=\sin \frac{\pi}{6}\)
\(\theta=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}\)
\(\theta=n \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}\)
\(\therefore\) āύāĻŋāĻ°ā§āϪ⧇āϝāĻŧ āϏāĻŽāĻžāϧāĻžāύ: \(\theta=2 n \pi \pm \frac{2 \pi}{3},(2 n+1) \frac{\pi}{2}, n \pi+(-1)^{n} \frac{\pi}{6}\) āϝāĻ–āύ \(n \in z\)


13. āϏāĻžāϞ⧋āĻ•āϏāĻ‚āĻļā§āϞ⧇āώāϪ⧇āϰ āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ• āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϟāĻŋ āϞāĻŋāĻ– āĻāĻŦāĻ‚
āϏāĻžāϞ⧋āĻ•āϏāĻ‚āĻļā§āϞ⧇āώāϪ⧇āϰ āĻĻ⧁āχāϟāĻŋ āϗ⧁āϰ⧁āĻ¤ā§āĻŦāĻĒā§‚āĻ°ā§āĻŖ āĻ•āĻžāϜ āωāĻ˛ā§āϞ⧇āĻ– āĻ•āϰāĨ¤


āωāĻ¤ā§āϤāϰ: āϏāĻžāϞ⧋āĻ•āϏāĻ‚āĻļā§āϞ⧇āώāϪ⧇āϰ āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ• āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻž:

āϏāĻžāϞ⧋āĻ•āϏāĻ‚āĻļā§āϞ⧇āώāϪ⧇āϰ āĻĻ⧁āϟāĻŋ āϗ⧁āϰ⧁āĻ¤ā§āĻŦāĻĒā§‚āĻ°ā§āĻŖ āĻ•āĻžāϜ āύāĻŋāĻšā§‡ āωāĻ˛ā§āϞ⧇āĻ– āĻ•āϰāĻž āĻšāϞ

  1. āĻļāĻ•ā§āϤāĻŋāϰ āĻ‰ā§ŽāϏ: āĻœā§€āĻŦāϜāĻ—āϤ⧇āϰ āĻļāĻ•ā§āϤāĻŋāϰ āĻāĻ•āĻŽāĻžāĻ¤ā§āϰ āĻ‰ā§ŽāϏ āĻšāϞāĨ¤
    āϏāĻžāϞ⧋āĻ•āϏāĻ‚āĻļā§āϞ⧇āώāĻŖ āĻĒā§āϰāĻ•ā§āϰāĻŋāϝāĻŧāĻžāĨ¤ āĻ–āĻžāĻĻā§āϝ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āĻ āĻļāĻ•ā§āϤāĻŋ āφāϏ⧇ āϏ⧂āĻ°ā§āϝ
    āĻšāϤ⧇āĨ¤ āϏ⧂āĻ°ā§āϝ⧇āϰ āĻ āĻļāĻ•ā§āϤāĻŋ āϏāĻžāϞ⧋āĻ•āϏāĻ‚āĻļā§āϞ⧇āώāĻŖ āĻĒā§āϰāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϝāĻŧ āĻ–āĻžāĻĻā§āϝ⧇ āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ• āĻļāĻ•ā§āϤāĻŋ āĻšāĻŋāϏ⧇āĻŦ⧇ āϏāĻžā§āϚāĻŋāϤ āĻĨāĻžāϕ⧇āĨ¤ āĻ•āĻžāĻœā§‡āχ āĻœā§€āĻŦ⧇āϰ āϏāĻ•āϞ āĻļāĻ•ā§āϤāĻŋāϰ āĻ‰ā§ŽāϏ āĻ āĻĒā§āϰāĻ•ā§āϰāĻŋāϝāĻŧāĻžāĨ¤
  2. āĻĒāϰāĻŋāĻŦ⧇āĻļ āĻĒāϰāĻŋāĻļā§‹āϧāύ: āϏāĻžāϞ⧋āĻ•āϏāĻ‚āĻļā§āϞ⧇āώāĻŖ āĻĒā§āϰāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϝāĻŧ CO,
    āĻļā§‹āώāĻŋāϤ āĻšāϝāĻŧ āĻāĻŦāĻ‚ 0, āĻ‰ā§ŽāĻĒāĻ¨ā§āύ āĻšāϝāĻŧāĨ¤ āĻĒā§āϰāĻžāĻŖāĻŋāϕ⧁āϞ⧇āϰ āϜāĻ¨ā§āϝ āĻ•ā§āώāϤāĻŋāĻ•āĻžāϰāĻ• CO, āĻļā§‹āώāĻŖ āĻ•āϰ⧇ āĻāĻŦāĻ‚ āϏāĻ•āϞ āĻœā§€āĻŦ⧇āϰ āĻļā§āĻŦāϏāύ⧇āϰ āϜāĻ¨ā§āϝ N, āϏāϰāĻŦāϰāĻžāĻš āĻ•āϰ⧇ āĻ āĻĒā§āϰāĻ•ā§āϰāĻŋāϝāĻŧāĻž āĻĒāϰāĻŋāĻŦ⧇āĻļ āĻĒāϰāĻŋāĻļā§‹āϧāύ āĻ•āϰ⧇ āĻĨāĻžāϕ⧇āĨ¤ āĻāĻ­āĻžāĻŦ⧇ āϏāĻŦ⧁āϜ āωāĻĻā§āĻ­āĻŋāĻĻ⧇āϰ āĻ āĻĒā§āϰāĻ•ā§āϰāĻŋāϝāĻŧāĻž āĻœā§€āĻŦāϜāĻ—āϤāϕ⧇
    āύāĻŋāĻļā§āϚāĻŋāϤ āĻ§ā§āĻŦāĻ‚āϏ⧇āϰ āĻšāĻžāϤ āĻĨ⧇āϕ⧇ āϰāĻ•ā§āώāĻž āĻ•āϰ⧇āĨ¤

14. āĻāĻ•āĻŦā§€āϜāĻĒāĻ¤ā§āϰ⧀ āωāĻĻā§āĻ­āĻŋāĻĻ⧇āϰ āĻŽā§‚āϞ⧇āϰ āĻ…āĻ¨ā§āϤāĻ°ā§āĻ—āĻ āύāĻ—āϤ āĻļāύāĻžāĻ•ā§āϤāĻ•āĻžāϰ⧀ āĻ›āϝāĻŧāϟāĻŋ
āĻŦ⧈āĻļāĻŋāĻˇā§āĻŸā§āϝ āϞāĻŋāĻ–āĨ¤


āωāĻ¤ā§āϤāϰ: āĻāĻ•āĻŦā§€āϜāĻĒāĻ¤ā§āϰ⧀ āωāĻĻā§āĻ­āĻŋāĻĻ⧇āϰ āĻŽā§‚āϞ⧇āϰ āĻ…āĻ¨ā§āϤāĻ°ā§āĻ—āĻ āύāĻ—āϤ āĻļāύāĻžāĻ•ā§āϤāĻ•āĻžāϰ⧀ āĻŦ⧈āĻļāĻŋāĻˇā§āĻŸā§āϝāϏāĻŽā§‚āĻš:

  1. āĻ¤ā§āĻŦāϕ⧇ āĻ•āĻŋāωāϟāĻŋāĻ•āϞ āĻ…āύ⧁āĻĒāĻ¸ā§āĻĨāĻŋāϤāĨ¤ āĻāϤ⧇ āĻāĻ•āϕ⧋āώ⧀ āϰ⧋āĻŽ āφāϛ⧇āĨ¤
  2. āĻ…āϧāσāĻ¤ā§āĻŦāĻ• āĻ…āύ⧁āĻĒāĻ¸ā§āĻĨāĻŋāϤāĨ¤
  3. āĻĒāϰāĻŋāϚāĻ•ā§āϰ āĻāĻ•āϏāĻžāϰāĻŋ āϕ⧋āώ āĻĻāĻŋāϝāĻŧ⧇ āĻ—āĻ āĻŋāϤāĨ¤
  4. āĻ­āĻžāĻ¸ā§āϕ⧁āϞāĻžāϰ āĻŦāĻžāĻ¨ā§āĻĄāϞ āĻ…āϰ⧀āϝāĻŧ āĻāĻŦāĻ‚ āĻāĻ•āĻžāĻ¨ā§āϤāϰāĻ­āĻžāĻŦ⧇ āϏāĻœā§āϜāĻŋāϤāĨ¤
  5. āĻŽā§‡āϟāĻžāϜāĻžāχāϞ⧇āĻŽ āϕ⧇āĻ¨ā§āĻĻā§āϰ⧇āϰ āĻĻāĻŋāϕ⧇ āĻāĻŦāĻ‚ āĻĒā§āϰ⧋āĻŸā§‹āϜāĻžāχāϞ⧇āĻŽ āĻĒāϰāĻŋāϧāĻŋāϰ
    āĻĻāĻŋāϕ⧇ āĻ…āĻŦāĻ¸ā§āĻĨāĻŋāϤāĨ¤
  6. āϜāĻžāχāϞ⧇āĻŽ āĻŦāĻž āĻĢā§āϞ⧋āϝāĻŧ⧇āĻŽ āϗ⧁āĻšā§āϛ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž āĻ›āϝāĻŧ āĻāϰ āĻ…āϧāĻŋāĻ• |


15. āĻ—āĻŖ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽāĻžāύ⧁āώ⧇āϰ āĻļā§āϰ⧇āĻŖāĻŋāĻŦāĻŋāĻ¨ā§āϝāĻžāϏ āĻ•āϰ (āĻĒāĻ°ā§āĻŦ, āωāĻĒ-āĻĒāĻ°ā§āĻŦ, āĻļā§āϰ⧇āĻŖāĻŋ, āĻŦāĻ°ā§āĻ—, āĻ—ā§‹āĻ¤ā§āϰāϏāĻš)āĨ¤


āωāĻ¤ā§āϤāϰ: āĻŽāĻžāύ⧁āώ⧇āϰ āĻļā§āϰ⧇āĻŖāĻŋāĻŦāĻŋāĻ¨ā§āϝāĻžāϏ:
āĻĒāĻ°ā§āĻŦ – Chordata
 āωāĻĒāĻĒāĻ°ā§āĻŦ – Vertebrata
  āĻļā§āϰ⧇āĻŖāĻŋ – Mammalia
   āĻŦāĻ°ā§āĻ— – Primates
    āωāĻĒāĻŦāĻ°ā§āĻ— – Hominoidea
     āĻ—ā§‹āĻ¤ā§āϰ – Hominidae
      āĻ—āĻŖ – Homo


16. āύāĻŋāĻŽā§āύ⧋āĻ•ā§āϤ āĻĒā§āϰāĻžāĻŖā§€āĻĻ⧇āϰ āĻŦ⧈āĻœā§āĻžāĻžāύāĻŋāĻ• āύāĻžāĻŽ āϞāĻŋāĻ–āĨ¤

a. āĻ—ā§‹āϞāĻ•ā§ƒāĻŽāĻŋ b. āφāĻĒ⧇āϞ āĻļāĻžāĻŽā§āĻ• c. āĻœā§‹āρāĻ•
d. āϰ⧁āχāĻŽāĻžāĻ› e. āϘāĻĄāĻŧāĻŋāϝāĻŧāĻžāϞ f. āĻĻā§‹āϝāĻŧ⧇āϞ


āωāĻ¤ā§āϤāϰ: āĻĒā§āϰāĻžāĻŖā§€āĻĻ⧇āϰ āĻŦ⧈āĻœā§āĻžāĻžāύāĻŋāĻ• āύāĻžāĻŽ āύāĻŋāĻšā§‡ āωāĻ˛ā§āϞ⧇āĻ– āĻ•āϰāĻž āĻšāϞ⧋:

āĻĒā§āϰāĻžāĻŖā§€āϰ āύāĻžāĻŽ āĻŦ⧈āĻœā§āĻžāĻžāύāĻŋāĻ• āύāĻžāĻŽ
(a) āĻ—ā§‹āϞāĻ•ā§ƒāĻŽāĻŋ Ascaris lambricoides
(b) āφāĻĒ⧇āϞ āĻļāĻžāĻŽā§āĻ• Pila globosa
(c) āĻœā§‹āρāĻ• Hiradinaria manillensis
(d) āϰ⧁āχāĻŽāĻžāĻ› Labeo rohita
(e) āϘāĻĄāĻŧāĻŋāϝāĻŧāĻžāϞ Gavialis gangeticus
(f) āĻĻā§‹āϝāĻŧ⧇āϞ Copsychus saularis

āĻŦāĻžāĻ‚āϞāĻž

17. āϏāĻžāϰāĻŽāĻ°ā§āĻŽ āϞ⧇āĻ– (āĻ…āύāϧāĻŋāĻ• āϚāĻžāϰ āĻŦāĻžāĻ•ā§āϝ⧇) :
āφāϏāĻŋāϤ⧇āϛ⧇ āĻļ⧁āĻ­āĻĻāĻŋāύ,
āĻĻāĻŋāύ⧇ āĻĻāĻŋāύ⧇ āĻŦāĻšā§ āĻŦāĻžāĻĄāĻŧāĻŋāϝāĻŧāĻžāϛ⧇ āĻĻ⧇āύāĻž, āĻļ⧁āϧāĻŋāϤ⧇ āĻšāχāĻŦ⧇ āĻ‹āĻŖ!
āĻšāĻžāϤ⧁āĻĄāĻŧāĻŋ āĻļāĻžāĻŦāϞ āĻ—āĻžāρāχāϤāĻŋ āϚāĻžāϞāĻžāϝāĻŧ⧇ āĻ­āĻžāĻ™āĻŋāϞ āϝāĻžāϰāĻž āĻĒāĻžāĻšāĻžāĻĄāĻŧ,
āĻĒāĻžāĻšāĻžāĻĄāĻŧ-āĻ•āĻžāϟāĻž āϏ⧇ āĻĒāĻĨ⧇āϰ āĻĻ⧁āĻĒāĻžāĻļ⧇ āĻĒāĻĄāĻŧāĻŋāϝāĻŧāĻž āϝāĻžāĻĻ⧇āϰ āĻšāĻžāĻĄāĻŧ,
āϤ⧋āĻŽāĻžāϰ⧇ āϏ⧇āĻŦāĻŋāϤ⧇ āĻšāχāϞ āϝāĻžāĻšāĻžāϰāĻž āĻŽāϜ⧁āϰ, āĻŽā§āĻŸā§‡ āĻ“ āϕ⧁āϞāĻŋ,
āϤ⧋āĻŽāĻžāϰ⧇ āĻŦāĻšāĻŋāϤ⧇ āϝāĻžāϰāĻž āĻĒāĻŦāĻŋāĻ¤ā§āϰ āĻ…āĻ™ā§āϗ⧇ āϞāĻžāĻ—āĻžāϞ āϧ⧂āϞāĻŋ;
āϤāĻžāϰāĻžāχ āĻŽāĻžāύ⧁āώ, āϤāĻžāϰāĻžāχ āĻĻ⧇āĻŦāϤāĻž, āĻ—āĻžāĻšāĻŋ āϤāĻžāĻšāĻžāĻĻ⧇āϰāĻŋ āĻ—āĻžāύ,
āϤāĻžāĻĻ⧇āϰ āĻŦā§āϝāĻĨāĻŋāϤ āĻŦāĻ•ā§āώ⧇ āĻĒāĻž āĻĢ⧇āϞ⧇ āφāϏ⧇ āύāĻŦ āωāĻ¤ā§āĻĨāĻžāύ!


āϏāĻžāϰāĻŽāĻ°ā§āĻŽ: āĻļā§āϰāĻŽāĻœā§€āĻŦā§€ āĻŽāĻžāύ⧁āώ⧇āϰ āĻļā§āϰāĻŽā§‡-āϘāĻžāĻŽā§‡ āĻ“ āϰāĻ•ā§āϤ⧇ āĻœā§€āĻŦāύ⧇āϰ āĻŦāĻŋāύāĻŋāĻŽāϝāĻŧ⧇ āĻ—āĻĄāĻŧ⧇ āωāϠ⧇āϛ⧇ āĻ¸ā§āĻŦāĻžāĻšā§āĻ›āĻ¨ā§āĻĻā§āϝāĻŽāϝāĻŧ āϏāĻ­ā§āϝāϤāĻžāĨ¤ āϤāĻžāĻĻ⧇āϰ āύāĻŋāϰāϞāϏ āĻĒāϰāĻŋāĻļā§āϰāĻŽā§‡ āφāĻŽāϰāĻž āϏ⧁āϖ⧇ āĻĻāĻŋāύāϝāĻžāĻĒāύ āĻ•āϰāϤ⧇ āϏāĻ•ā§āώāĻŽ āĻšāϝāĻŧ⧇āĻ›āĻŋāĨ¤ āĻ•āĻŋāĻ¨ā§āϤ⧁ āϏāĻŽāĻžāĻœā§‡ āĻ āĻĻ⧇āĻŦāϤāĻžāϤ⧁āĻ˛ā§āϝ āĻŽāĻžāύ⧁āώ āύāĻžāύāĻžāĻ­āĻžāĻŦ⧇ āĻļā§‹āώāĻŋāϤ, āĻŦāĻžā§āϚāĻŋāϤ āĻ“ āωāĻĒ⧇āĻ•ā§āώāĻŋāϤāĨ¤ āĻāϰāĻžāχ āĻāĻ•āĻĻāĻŋāύ
āύāĻŦāϜāĻžāĻ—āϰāϪ⧇āϰ āĻŽāĻ§ā§āϝāĻĻāĻŋāϝāĻŧ⧇ āĻŦāĻŋāĻļā§āĻŦ⧇ āĻĒāĻžāϞāĻžāĻŦāĻĻāϞ⧇āϰ āϏ⧂āϚāύāĻž āĻ•āϰāĻŦ⧇āĨ¤


18. āĻ­āĻžāĻŦ āϏāĻŽā§āĻĒā§āϰāϏāĻžāϰāĻŖ āĻ•āϰ (āĻ…āύāϧāĻŋāĻ• āĻ›āϝāĻŧ āĻŦāĻžāĻ•ā§āϝ⧇) :
āĻ—ā§āϰāĻ¨ā§āĻĨāĻ—āϤ āĻŦāĻŋāĻĻā§āϝāĻž āφāϰ āĻĒāϰāĻšāĻ¸ā§āϤ⧇ āϧāύāĨ¤
āύāĻšā§‡ āĻŦāĻŋāĻĻā§āϝāĻž, āύāĻšā§‡ āϧāύ, āĻšāϞ⧇ āĻĒā§āĻ°ā§Ÿā§‹āϜāύāĨ¤


āĻŽā§‚āϞāĻ­āĻžāĻŦ: āĻ…āĻ°ā§āϜāĻŋāϤ āϏāĻŽā§āĻĒāĻĻ āĻ“ āĻ…āĻ°ā§āϜāĻŋāϤ āĻœā§āĻžāĻžāύ āϝāĻĨāĻžāϏāĻŽāϝāĻŧ⧇ āĻ•āĻžāĻœā§‡ āϞāĻžāĻ—āĻžāύ⧋āĨ¤ āϗ⧇āϞ⧇āχ āĻļ⧁āϧ⧁ āϏāĻžāĻ°ā§āĻĨāĻ•āϤāĻž āĻĒā§āϰāĻŽāĻžāĻŖāĻŋāϤ āĻšāϤ⧇ āĻĒāĻžāϰ⧇āĨ¤ āĻ•āĻŋāĻ¨ā§āϤ⧁ āϝ⧇ āĻœā§āĻžāĻžāύ āĻ“ āĻ…āĻ°ā§āĻĨāϏāĻŽā§āĻĒāĻĻ āĻŽāĻžāύ⧁āώ⧇āϰ āĻĒā§āĻ°ā§Ÿā§‹āϜāύ⧇āϰ āϏāĻŽāϝāĻŧ āĻ•āĻžāĻœā§‡ āϞāĻžāĻ—āĻžāύ⧋ āϝāĻžāϝāĻŧ āύāĻž, āϤāĻžāϰ āϕ⧋āύ⧋ āĻŽā§‚āĻ˛ā§āϝ āύ⧇āχāĨ¤
āĻ­āĻžāĻŦ āϏāĻŽā§āĻĒā§āϰāϏāĻžāϰāĻŖ: āĻ—ā§āϰāĻ¨ā§āĻĨāĻ—āϤ āĻŦāĻŋāĻĻā§āϝāĻž āϝāĻž āφāĻ¤ā§āĻŽāĻ¸ā§āĻĨ āĻ•āϰāĻž āĻšāϝāĻŧāύāĻŋ āĻāĻŦāĻ‚ āĻāĻŽāύ āϧāύ-āϏāĻŽā§āĻĒāĻĻ āϝāĻž āύāĻŋāĻœā§‡āϰ āĻ•āϰāĻžāϝāĻŧāĻ¤ā§āϤ āĻšāϝāĻŧāύāĻŋ- āĻ āϏāĻŽāĻ¸ā§āϤāχ āύāĻŋāϰāĻ°ā§āĻĨāĻ•āĨ¤ āĻ•āĻžāϰāĻŖāĨ¤ āĻĒā§āĻ°ā§Ÿā§‹āϜāύ⧀āϝāĻŧ āĻŽā§āĻšā§‚āĻ°ā§āϤ⧇ āĻāϗ⧁āϞ⧋āϰ āϝāĻĨāĻžāϝāĻĨ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻž āϏāĻŽā§āĻ­āĻŦ āĻšāϝāĻŧ āύāĻžāĨ¤ āĻĒ⧃āĻĨāĻŋāĻŦā§€āϤ⧇ āĻŽāĻžāύ⧁āώ⧇āϰ āĻœā§€āĻŦāύ⧇ āϧāύ-āϏāĻŽā§āĻĒāĻĻ āĻ“ āĻŦāĻŋāĻĻā§āϝāĻžāϰ āϗ⧁āϰ⧁āĻ¤ā§āĻŦāĨ¤ āĻ…āĻĒāϰāĻŋāϏ⧀āĻŽāĨ¤ āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻŦāĻŋāĻĻā§āϝāĻž āϝāĻĻāĻŋ āĻ—ā§āϰāĻ¨ā§āĻĨ⧇āϰ āϭ⧇āϤāϰ⧇āχ āĻŽāϞāĻžāϟāĻŦāĻĻā§āϧ āĻ…āĻŦāĻ¸ā§āĻĨāĻžāϝāĻŧāĨ¤ āĻ…āĻŦā§āϝāĻŦāĻšā§ƒāϤ āĻšāϝāĻŧ⧇ āĻĒāĻĄāĻŧ⧇ āĻĨāĻžāϕ⧇, āĻŽāĻžāύ⧁āώ āϝāĻĻāĻŋ āϤāĻž āφāĻ¤ā§āĻŽāĻ¸ā§āĻĨ āύāĻž āĻ•āϰ⧇ āĻ•āĻŋāĻ‚āĻŦāĻž āφāĻ¤ā§āĻŽāĻ¸ā§āĻĨ āĻ•āϰ⧇ āϚāϞāĻŽāĻžāύ āĻœā§€āĻŦāύ⧇ āĻ•āĻžāĻœā§‡ āϞāĻžāĻ—āĻžāϤ⧇ āύāĻž āĻĒāĻžāϰ⧇, āϤāĻŦ⧇ āϏ⧇ āĻŦāĻŋāĻĻā§āϝāĻž āĻŽā§‚āϞāϤ āϕ⧋āύ⧋ āĻŦāĻŋāĻĻā§āϝāĻžāχ āύāϝāĻŧ āĨ¤ āĻŽāϞāĻžāϟāĻŦāĻĻā§āϧ āĻ—ā§āϰāĻ¨ā§āĻĨ⧇āϰ āĻŦāĻŋāĻĻā§āϝāĻžāϕ⧇ āĻŽāĻžāύ⧁āώ⧇āϰ āĻœā§€āĻŦāύ⧇ āĻĒā§āĻ°ā§Ÿā§‹āĻ— āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤ āϤāĻŦ⧇āχ āϏ⧇ āĻŦāĻŋāĻĻā§āϝāĻž āĻĒ⧃āĻĨāĻŋāĻŦā§€āϰ āĻŽāĻžāύ⧁āώ⧇āϰ āĻ•āĻ˛ā§āϝāĻžāĻŖ āĻŦāϝāĻŧ⧇ āφāύāĻŦ⧇āĨ¤ āĻ…āĻ¨ā§āϝāĻĻāĻŋāϕ⧇, āύāĻŋāĻœā§‡āϰ āĻ…āĻ°ā§āϜāĻŋāϤ āϧāύāϏāĻŽā§āĻĒāĻ¤ā§āϤāĻŋ āϝāĻĻāĻŋ āĻ…āĻ¨ā§āϝ⧇āϰ āĻ•āĻžāϛ⧇ āϰāĻ•ā§āώāĻŋāϤ āĻĨāĻžāϕ⧇, āϤāĻŦ⧇ āĻĒā§āĻ°ā§Ÿā§‹āϜāύ⧇āϰ āϏāĻŽāϝāĻŧ āϏ⧇āχ āϏāĻŽā§āĻĒāĻ¤ā§āϤāĻŋ āωāĻĻā§āϧāĻžāϰ āĻ•āϰāĻžāĻ“ āĻ…āύ⧇āĻ• āϏāĻŽāϝāĻŧ āϏāĻŽāĻ¸ā§āϝāĻž āĻšāϝāĻŧ⧇ āĻĻāĻžāρāĻĄāĻŧāĻžāϝāĻŧ āĨ¤ āĻŦāϰāĻ‚ āύāĻŋāĻœā§‡āϰ āĻ•āĻžāϛ⧇ āĻĨāĻžāĻ•āĻž āϏāĻŽā§āĻĒāĻ¤ā§āϤāĻŋāχ āĻĒā§āĻ°ā§Ÿā§‹āϜāύ⧇āϰ āϏāĻŽāϝāĻŧ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻž āϏāĻŽā§āĻ­āĻŦāĨ¤ āϏ⧁āϤāϰāĻžāĻ‚ āϏāĻžāĻ°ā§āĻĨāĻ• āĻ“ āϏ⧁āĻ¨ā§āĻĻāϰ āĻœā§€āĻŦāύ⧇āϰ āĻĒā§āĻ°ā§Ÿā§‹āϜāύ⧇ āĻŦāĻŋāĻĻā§āϝāĻžāϕ⧇ āĻ—ā§āϰāĻ¨ā§āĻĨ⧇āϰ āĻŦāĻ¨ā§āĻĻāĻŋāĻļāĻžāϞāĻž āĻšāϤ⧇ āĻŽā§āĻ•ā§āϤ āĻ•āϰ⧇ āφāĻ¤ā§āĻŽāĻ¸ā§āĻĨ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇, āĻĒāϰ⧇āϰ āĻšāĻžāϤ⧇ āϰāĻ•ā§āώāĻŋāϤ āϏāĻŽā§āĻĒāĻ¤ā§āϤāĻŋ āύāĻŋāĻœā§‡āϰ āĻ•āϰāĻžāϝāĻŧāĻ¤ā§āϤ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤ āĻŦāĻŋāĻĻā§āϝāĻž āĻ“ āϏāĻŽā§āĻĒāĻĻ āϤāĻ–āύāχ āϏāĻžāĻ°ā§āĻĨāĻ• āĻšāϝāĻŧ⧇ āĻ“āϠ⧇ āϝāĻ–āύ āĻŽāĻžāύ⧁āώ⧇āϰ āϝāĻĨāĻžāĻ°ā§āĻĨ āĻĒā§āĻ°ā§Ÿā§‹āϜāύ āĻŽāĻŋāϟāĻžāϝāĻŧ āĨ¤ āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻŽāĻžāύ⧁āώ⧇āϰ āϝāĻĨāĻžāĻ°ā§āĻĨ āĻĒā§āĻ°ā§Ÿā§‹āϜāύ⧇ āϝāĻĻāĻŋ āϤāĻž āĻ•āĻžāĻœā§‡ āύāĻž āϞāĻžāĻ—āĻžāύ⧋ āϝāĻžāϝāĻŧ, āϤāĻŦ⧇ āϏ⧇āχ āĻŦāĻŋāĻĻā§āϝāĻž āĻ“ āĻ…āĻ°ā§āĻĨ āĻŦāĻŋāĻĢāϞāϤāĻžāϰ āύāĻžāĻŽāĻžāĻ¨ā§āϤāϰāĨ¤
āĻŽāĻ¨ā§āϤāĻŦā§āϝ: āĻĒāϰāĻŋāĻļ⧇āώ⧇ āĻŦāϞāĻž āϝāĻžāϝāĻŧ āĻœā§āĻžāĻžāύ āĻ“ āĻŦāĻŋāĻĻā§āϝāĻž āĻœā§€āĻŦāύ⧇āϰ āĻ•āĻžāĻœā§‡ āϞāĻžāĻ—āĻžāϤ⧇ āĻšāĻŦ⧇, āφāϰ āϤāĻžāϤ⧇āχ āĻĒā§āϰāϤāĻŋāĻĒāĻ¨ā§āύ āĻšāĻŦ⧇ āĻŽāĻžāύāĻŦāĻœā§€āĻŦāύ⧇āϰ āϏāĻžāĻ°ā§āĻĨāĻ•āϤāĻžāĨ¤ āϕ⧇āύāύāĻž, āĻĒā§āĻ°ā§Ÿā§‹āϜāύ⧇āϰ āϏāĻŽāϝāĻŧ āϏāĻŽā§āĻĒāĻĻ āĻ“ āĻŦāĻŋāĻĻā§āϝāĻž āύāĻŋāĻœā§‡āϰ āĻšāĻ¸ā§āϤāĻ—āϤ āĻĨāĻžāĻ•āĻž āĻ…āĻĒāϰāĻŋāĻšāĻžāĻ°ā§āϝāĨ¤


19. āĻŦāĻžāĻ‚āϞāĻžāĻĻ⧇āĻļ⧇āϰ āĻŽā§āĻ•ā§āϤāĻŋāϝ⧁āĻĻā§āĻ§â€™ āύāĻŋāϝāĻŧ⧇ ā§ŦāϟāĻŋ āĻŦāĻžāĻ•ā§āϝ āϞ⧇āĻ–āĨ¤


āωāĻ¤ā§āϤāϰ : āĻŦāĻžāĻ™āĻžāϞāĻŋāϰ āϜāĻžāϤ⧀āϝāĻŧ āĻœā§€āĻŦāύ⧇ āϏāĻŦāĻšā§‡āϝāĻŧ⧇ āĻ—ā§ŒāϰāĻŦā§‹āĻœā§āĻœā§āĻŦāϞ āϘāϟāύāĻž āĻŦāĻžāĻ‚āϞāĻžāĻĻ⧇āĻļ⧇āϰ āĻŽā§āĻ•ā§āϤāĻŋāϝ⧁āĻĻā§āϧāĨ¤ ⧧⧝⧭⧧ āϏāĻžāϞ⧇ āĻŽā§āĻ•ā§āϤāĻŋāϝ⧁āĻĻā§āϧ⧇āϰ āĻŽāĻ§ā§āϝ āĻĻāĻŋāϝāĻŧ⧇āχ āĻŦāĻžāĻ™āĻžāϞāĻŋ āĻ¸ā§āĻŦāĻžāϧ⧀āύ āϜāĻžāϤāĻŋ āĻšāĻŋāϏ⧇āĻŦ⧇ āϏāĻžāϰāĻž āĻŦāĻŋāĻļā§āĻŦ⧇ āĻĒāϰāĻŋāϚāĻŋāϤāĻŋ āϞāĻžāĻ­ āĻ•āϰ⧇āĨ¤ āĻŦāĻžāĻ™āĻžāϞāĻŋ āϜāĻžāϤāĻŋ ⧧⧝⧭⧧ āϏāĻžāϞ⧇ āĻŦāĻ™ā§āĻ—āĻŦāĻ¨ā§āϧ⧁āϰ ā§­ āĻŽāĻžāĻ°ā§āĻšā§‡āϰ āĻ­āĻžāώāϪ⧇ āĻ…āύ⧁āĻĒā§āϰāĻžāĻŖāĻŋāϤ āĻšāϝāĻŧ⧇ āĻ¸ā§āĻŦāϤāσāĻ¸ā§āĻĢā§‚āĻ°ā§āϤāĻ­āĻžāĻŦ⧇ āĻŽā§āĻ•ā§āϤāĻŋāϝ⧁āĻĻā§āϧ⧇ āϝ⧋āĻ—āĻĻāĻžāύ āĻ•āϰ⧇āĻ›āĻŋāϞāĨ¤ ⧧⧝⧭⧧ āϏāĻžāϞ⧇āϰ ā§§ā§Ļ āĻāĻĒā§āϰāĻŋāϞ āĻ—āĻ āĻŋāϤ āĻŽā§āϜāĻŋāĻŦāύāĻ—āϰ āϏāϰāĻ•āĻžāϰ āĻŦāĻžāĻ‚āϞāĻžāĻĻ⧇āĻļ⧇āϰ āϰāĻŖāĻžāĻ™ā§āĻ—āύāϕ⧇ ā§§ā§§āϟāĻŋ āϏ⧇āĻ•ā§āϟāϰ⧇ āĻ­āĻžāĻ— āĻ•āϰ⧇ āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ•āϟāĻŋāϰ āϜāĻ¨ā§āϝ āĻāĻ•āϜāύ āĻ•āϰ⧇ āϏ⧇āĻ•ā§āϟāϰ āĻ•āĻŽāĻžāĻ¨ā§āĻĄāĻžāϰāĻ“ āύāĻŋāϝ⧁āĻ•ā§āϤ āĻ•āϰ⧇āύāĨ¤ āĻāĻ­āĻžāĻŦ⧇āχ āĻ…āĻ¸ā§āĻĨāĻžāϝāĻŧā§€ āϏāϰāĻ•āĻžāϰ⧇āϰ āϤāĻ¤ā§āĻ¤ā§āĻŦāĻžāĻŦāϧāĻžāύ⧇ āĻĻā§€āĻ°ā§āϘ āύāϝāĻŧ āĻŽāĻžāϏ⧇āϰ āϏāĻļāĻ¸ā§āĻ¤ā§āϰ āĻŽā§āĻ•ā§āϤāĻŋāϝ⧁āĻĻā§āϧ⧇āϰ āĻĒāϰ āĻŦāĻžāĻ‚āϞāĻžāĻĻ⧇āĻļ āĻ…āĻŦāĻļ⧇āώ⧇ āĻ¸ā§āĻŦāĻžāϧ⧀āύāϤāĻžāϰ āϞāĻžāϞ āϏ⧂āĻ°ā§āϝ āĻ›āĻŋāύāĻŋāϝāĻŧ⧇ āφāύāϤ⧇ āϏāĻ•ā§āώāĻŽ āĻšāϝāĻŧāĨ¤ āĻŽā§āĻ•ā§āϤāĻŋāϝ⧁āĻĻā§āϧ⧇āϰ āϏāĻŽāϝāĻŧ āĻĻ⧇āĻļāĻŽāĻžāϤ⧃āĻ•āĻžāϰ āϟāĻžāύ⧇ āĻŦāĻžāĻ‚āϞāĻžāĻĻ⧇āĻļ⧇āϰ āĻŽāĻžāύ⧁āώ āφāĻ¤ā§āĻŽāĻ¤ā§āϝāĻžāϗ⧇āϰ āϝ⧇ āĻĻ⧃āĻˇā§āϟāĻžāĻ¨ā§āϤ āϰ⧇āϖ⧇āϛ⧇ āϤāĻž āχāϤāĻŋāĻšāĻžāϏ⧇ āĻŦāĻŋāϰāϞ āϤāĻžāχāϤ⧋ āĻ•āĻŦāĻŋ āϏ⧁āĻ•āĻžāĻ¨ā§āϤ āĻ­āĻŸā§āϟāĻžāϚāĻžāĻ°ā§āϝ⧇āϰ āĻ•āĻŖā§āϠ⧇ āĻ§ā§āĻŦāύāĻŋāϤ āĻšāϝāĻŧ⧇āϛ⧇-
āϏāĻžāĻŦāĻžāϏ āĻŦāĻžāĻ‚āϞāĻžāĻĻ⧇āĻļ, āĻ āĻĒ⧃āĻĨāĻŋāĻŦā§€āĨ¤
āĻ…āĻŦāĻžā§°ā§ āϤāĻžāĻ•āĻŋāϝāĻŧ⧇ āϰāϝāĻŧ;
āĻœā§āĻŦāϞ⧇-āĻĒ⧁āĻĄāĻŧ⧇-āĻŽāϰ⧇ āĻ›āĻžāϰāĻ–āĻžāϰ
āϤāĻŦ⧁ āĻŽāĻžāĻĨāĻž āύ⧋āϝāĻŧāĻžāĻŦāĻžāϰ āύāϝāĻŧāĨ¤


20. āĻŦāĻŋāĻĒāϰ⧀āϤ āĻļāĻŦā§āĻĻ āϞ⧇āĻ– :
āφāϏāĻŽāĻžāύ
āĻ¸ā§āĻĨā§‚āϞāĻŦ⧁āĻĻā§āϧāĻŋ
āĻ•āĻžāĻ˛ā§āĻĒāύāĻŋāĻ•


āωāĻ¤ā§āϤāϰ

āĻļā§āĻŦā§āĻĻ āĻŦāĻŋāĻĒāϰ⧀āϤ āĻļāĻŦā§āĻĻ
āφāϏāĻŽāĻžāύ āϜāĻŽāĻŋāύ
āĻ¸ā§āϕ⧁āϞāĻŦ⧁āĻĻā§āϧāĻŋ āϏ⧂āĻ•ā§āĻˇā§āĻŽāĻŦ⧁āĻĻā§āϧāĻŋ
āĻ•āĻžāĻ˛ā§āĻĒāύāĻŋāĻ• āĻŦāĻžāĻ¸ā§āϤāĻŦāĻŋāĻ•

English

21. Hold fast to dreams
For if dreams die
Life is a broken-winged bird
That cannot fly
Which poem are these lines taken from? Who is the writer of the poem? What does he mean by “Life is a broken-winged bird”?


Ans: These lines are taken from the poem Dreams written by American poet James Mercer Langston Hughes (1902-1967). The poem is quite short, comprising of two stanzas only including eight lines long. Langston Hughes starts out his poem, Dreams by immediately concerning readers with a piece of advice: ‘Hold fast to dreams’ In the very first line, he mentions the readers about the importance of dreams in our life. The dreams of future progress our life and help to achieve the goals. If our dreams die, our life can be brutal, meaningless and hopeless. The poet uses the phrase ‘a broken-winged bird’ at three line in the first stanza as a metaphor. In literature, the bird symbolizes hope, ecstasy and liberty. “Brokenwinged bird’ means hopeless, joylessness and slavery. The poet means by the line ‘Life is a brokenwinged bird’ that a person becomes purposeless and hopeless without dreams.


22. Write six sentences on ‘The influcence of culture
on adolescents’


Ans: The influence of culture for on adolescence Adolescence is a stage of development, a period of transition between childhood and adulthood. All adolescents go through changes; physical changes, social and emotional changes and the process of developing their individual identity. They came from different backgrounds are influenced by different cultural norms and different attitudes towards values and norms in society. Parents and family life are the foundations for building an adolescence’s personality and identity, instilling values and social norms. Parenting practices are influenced by culture and an adolescent’s upbringing is affected by ethnic group, values and traditions that he belongs to. So culture has a strong influence on development, behavior, values and beliefs. Family rituals and good communication have a positive affect on adolescents. Parents who instill positive cultural values and beliefs in their children help raise their self-cteem and
academic success.


23. Write six sentences on the importance of
biodiversity for our livelihood.


Ans: The importance of biodiversity for our livelihood Biodiversity is the existence of a large number of different kinds of animals and plants which make a balanced environment. Millions people depend on nature and species for their day-to-day livelihood. Biodiversity has an important role for our livelihood. Because biodiversity provides many sources of food, fuel, medicines and other products of natural materials. People can use these for earning source. Nature-related tourism is also a significant income generator for many people.


24. What is rhyme? why do writers use rhyme in poems?


Ans: Rhyme: Rhyme is a repetition of similar sounding words, occuring at the end of lines in poem or songs. A rhyme is a tool utilizing repeating patterns that bring rhythm or musicality to poems.
“Shall I compare thee to a summer’s day?
Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May, And summer’s lease hath all too short a date:’ (Sonnet 18 by William Shakespeare) There are different types of rhymes used in poems.

  1. End Rhyme
  2. Internal Rhyme
  3. Slant Rhyme
  4. Rich Rhyme
  5. Eye Rhyme
  6. Identical Rhyme

The writers make a poem musical to readers by using the rhyme. The writers use it to make a poem musical and

Leave a Comment

Your email address will not be published. Required fields are marked *