DU A Unit Admission Question Solution 2020-2021
āύāĻŋāĻā§āϰ āĻāĻŋāĻĄāĻŋāĻāϤ⧠āĻĻā§āĻā§ āύāĻžāĻ āĻŦāĻŋāϏā§āϤāĻžāϰāĻŋāϤ:
āĻā§āϰā§āϏāĻāĻŋ āĻāĻŋāύāϤ⧠āĻĒāĻžāĻļā§āϰ āĻŦāĻžāĻāύāĻāĻŋ āĻā§āϞāĻŋāĻ āĻāϰ:  
āĻā§āϰā§āϏā§āϰ āĻĄā§āĻŽā§ āĻāĻŋāĻĄāĻŋāĻ(āĻāĻāĻžāĻŦā§ āĻĒāĻĻāĻžāϰā§āĻĨāĻŦāĻŋāĻā§āĻāĻžāύ+āϰāϏāĻžā§āύ+āĻāĻā§āĻāϤāϰāĻāĻŖāĻŋāϤ āĻāϰ āĻŦāĻŋāĻāϤ āĻŦāĻŋāĻļ āĻŦāĻāϰā§āϰ āϏāĻāϞ āĻĒā§āϰāĻļā§āύā§āϰ āϏāĻŽāĻžāϧāĻžāύ āĻĨāĻžāĻāĻŦā§ āĻāĻŋāĻĄāĻŋāĻāϤā§)
āĻĒāĻĻāĻžāϰā§āĻĨāĻŦāĻŋāĻā§āĻāĻžāύ
-
āĻāĻāĻāĻŋ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻĒāĻžāϤ āϧāĻžāϰāĻāĻā§ āĻāĻžāϰā§āĻāĻŋāϤ āĻāϰāĻžāϰ āĻĒāϰ āĻŦā§āϝāĻžāĻāĻžāϰāĻŋ āĻā§āϞ⧠āĻĢā§āϞāĻž āĻšāϞā§āĨ¤ āĻ āĻ
āĻŦāϏā§āĻĨāĻžāϝāĻŧ āϧāĻžāϰāĻāĻāĻŋāϤ⧠āϏāĻā§āĻāĻŋāϤ āĻļāĻā§āϤāĻŋāϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ \(U_{0}\)āĨ¤ āĻĒāĻžāϤ āĻĻā§āĻāĻŋāϰ āĻĻā§āϰāϤā§āĻŦ āϝāĻĻāĻŋ āĻĻā§āĻŦāĻŋāĻā§āĻŖ āĻāϰāĻž āĻšāϝāĻŧ, āϤāĻŦā§ āϧāĻžāϰāĻā§ āϏāĻā§āĻāĻŋāϤ āĻļāĻā§āϤāĻŋ āĻāϤāĻā§āύ āĻšāĻŦā§?
- \(\frac{U_{0}}{2}\)
- \(\frac{U_{0}}{4}\)
- \(2 U_{0}\)
- \(4 U_{0}\)
Ans. \(2 U_{0}\)
- q āĻāϧāĻžāύ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻāĻāĻāĻŋ āĻāĻžā§āϞāĻāĻā§ āĻāĻāĻāĻŋ āĻ
āĻĒāϰāĻŋāĻŦāĻžāĻšā§ āϏā§āϤāĻžāϰ āĻāĻāĻĒā§āϰāĻžāύā§āϤ āĻŦā§āĻāϧ⧠\(\omega\) āĻā§āĻŖāĻŋāĻ āĻŦā§āĻā§ āĻāĻžā§āϰāĻžāύā§
āĻšāĻā§āĻā§āĨ¤ āĻā§āϰā§āĻŖāĻžāϝāĻŧāĻŽāĻžāύ āĻāϧāĻžāύāĻāĻŋ āĻā§ āĻĒāϰāĻŋāĻŽāĻžāĻŖ āĻŦāĻŋāĻĻā§āϝā§ā§ āĻā§āĻĒāύā§āύ āĻāϰāĻŦā§?- \(\omega q\)
- \(2 \pi \omega q\)
- \(\frac{q}{\omega}\)
- \(\frac{q \omega}{2 \pi}\)
Ans. \(\frac{q \omega}{2 \pi}\)
-
āϏā§āĻĨāĻŋāϤāĻŋāϏā§āĻĨāĻžāĻĒāĻ āĻā§āĻŖāĻžāĻāĻā§āϰ āĻŽāĻžāϤā§āϰāĻž āĻā§?
- \(\mathrm{MLT}^{-1}\)
- \(\mathrm{ML}^{-1} \mathrm{~T}^{-2}\)
- \(\mathrm{MLT}^{-2}\)
- \(\mathrm{ML}^{2} \mathrm{~T}^{-2}\)
Ans. \(\mathrm{ML}^{-1} \mathrm{~T}^{-2}\)
- āĻā§āύ āϤā§āϰā§āĻāĻŋ āĻĻā§āϰā§āĻāϰāĻŖā§ āĻāϤā§āϤāϞ āϞā§āύā§āϏ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰāĻž āĻšāϝāĻŧ?
- āĻā§āώā§āĻŖ āĻĻā§āώā§āĻāĻŋ
- āĻĻā§āϰ āĻĻā§āώā§āĻāĻŋ
- āĻāĻžāϞāĻļā§
- āĻŦāĻŋāώāĻŽ āĻĻā§āώā§āĻāĻŋ
Ans. āĻĻā§āϰ āĻĻā§āώā§āĻāĻŋ
- \({ }_{13}^{27} \mathrm{Al}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{14}^{30} \mathrm{Si}+()\) āύāĻŋāĻāĻā§āϞā§ā§ āĻŦāĻŋāĻā§āϰāĻŋā§āĻžāϤ⧠āĻ
āύā§āĻĒāϏā§āĻĨāĻŋāϤ āĻāĻŖāĻžāĻāĻŋ āĻšāϞ-
- āĻāϞāĻĢāĻž āĻāĻŖāĻž
- āĻĒā§āϰā§āĻāύ
- āĻāϞā§āĻāĻā§āϰāύ
- āύāĻŋāĻāĻā§āϰāύ
Ans. āĻĒā§āϰā§āĻāύ
- āĻāĻāĻāĻŋ āϏāϰāϞ āĻĻā§āϞāĻā§āϰ āĻĻā§āϞāύāĻāĻžāϞ 50% āĻŦāĻžāĻĄāĻŧāĻžāϤ⧠āĻāϰ āĻāĻžāϰā§āϝāĻāϰ āĻĻā§āϰā§āĻā§āϝā§āϰ āĻĒāϰāĻŋāĻŦāϰā§āϤāύ āĻāϤ āĻšāĻŦā§?
- 25%
- 100%
- 125%
- 67%
Ans. 125%
- āĻā§āύ⧠āĻāĻĻāϰā§āĻļ āĻā§āϝāĻžāϏā§āϰ āϤāĻžāĻĒāĻŽāĻžāϤā§āϰāĻž āĻā§āϞāĻāĻŋāύ āϏā§āĻā§āϞ⧠4 āĻā§āĻŖ āĻŦā§āĻĻā§āϧāĻŋ āĻĒā§āϞ⧠āϤāĻžāϰ āĻ
āĻŖā§āĻā§āϞā§āϰ āĻŽā§āϞ āĻāĻĄāĻŧ āĻŦāϰā§āĻāĻŦā§āĻ āĻāϤ āĻā§āĻŖ āĻŦā§āĻĻā§āϧāĻŋ āĻĒāĻžā§?
- 4
- \(1 / 2\)
- 2
- 1
Ans. 2
- 14 āĻŽāĻŋāύāĻŋāĻ āĻĒāϰ⧠āĻāĻāĻāĻŋ āϤā§āĻāϏā§āĻā§āϰāĻŋāϝāĻŧ āĻŽā§āϞā§āϰ \(\frac{1}{16}\) āĻ
āĻāĻļ āĻ
āĻŦāĻļāĻŋāώā§āĻ āĻĨāĻžāĻā§āĨ¤ āĻāϰ āĻ
āϰā§āϧāĻžāϝāĻŧā§ āĻšāĻŦā§-
- \(\frac{7}{8} \mathrm{~min}\)
- \(\frac{7}{4} \mathrm{~min}\)
- \(\frac{7}{2} \mathrm{~min}\)
- \(\frac{14}{3} \mathrm{~min}\)
Ans. \(\frac{7}{2} \mathrm{~min}\)
- āĻā§āύ⧠āĻĻāĻŋāĻ āĻĒāϰāĻŋāĻŦāϰā§āϤ⧠āϤāĻĄāĻŧāĻŋāĻā§āĻāĻžāϞāĻ āĻŦāϞā§āϰ āĻāĻĄāĻŧāĻŦāϰā§āĻā§āϰ āĻŦāϰā§āĻāĻŽā§āϞ āĻŽāĻžāύ 10 voltāĨ¤ āϤāĻĄāĻŧāĻŋāĻā§āĻāĻžāϞāĻ āĻŦāϞā§āϰ āĻļā§āϰā§āώāĻŽāĻžāύ āĻšāϞā§-
- 10.00 volt
- 5.00 volt
- 1.41 volt
- 14.14 volt
Ans. 14.14 volt
- a āĻāϰ āĻŽāĻžāύ āĻāϤ āĻšāϞ⧠\(\vec{A}=2 \hat{\imath}+2 \hat{\jmath}-\hat{k}\) āĻāĻŦāĻ \(\overrightarrow{\mathrm{B}}=a \hat{\imath}+\hat{\jmath}\) āĻā§āĻā§āĻāϰāĻĻā§āĻŦāϝāĻŧ āĻĒāϰāϏā§āĻĒāϰ āϞāĻŽā§āĻŦ āĻšāĻŦā§?
- 0
- \(\frac{7}{4} \)
- \(-1\)
- 2
Ans. \(-1\)
- āĻāϤ āĻŦā§āĻā§ āĻāϞāϞ⧠āĻāĻāĻāĻŋ āϰāĻā§āĻā§āϰ āĻāϤāĻŋāĻļā§āϞ āĻĻā§āϰā§āĻā§āϝ āĻāϰ āύāĻŋāĻļā§āĻāϞ āĻĻā§āϰā§āĻā§āϝā§āϰ āĻ
āϰā§āϧā§āĻ āĻšāĻŦā§?
- \(\frac{1}{2} c\)
- \(\frac{\sqrt{3}}{2} c\)
- \(\frac{3}{\sqrt{2}} C\)
- \(\frac{3}{4} C\)
Ans. \(\frac{\sqrt{3}}{2} c\)
- āĻāĻāĻāĻŋ m āĻāϰā§āϰ āĻŦāϏā§āϤ⧠āĻāϰā§āώāĻŖāĻŦāĻŋāĻšā§āύ āĻāĻāĻāĻŋ āϤāϞ⧠v āĻŦā§āĻā§ āĻāϞāĻžāϰ āϏāĻŽāϝāĻŧ āĻāĻāĻāĻŋ āϏā§āĻĒā§āϰāĻŋāĻ-āĻāϰ āϏāĻžāĻĨā§ āϧāĻžāĻā§āĻāĻž āϞā§āĻā§ āϏā§āĻĒā§āϰāĻŋāĻāĻāĻŋāĻā§ āϏāĻāĻā§āĻāĻŋāϤ āĻāϰāϞāĨ¤ āϏā§āĻĒā§āϰāĻŋāĻāĻāĻŋāϰ āĻŦāϞ-āϧā§āϰā§āĻŦāĻ k āĻšāϞ⧠āϏā§āĻĒā§āϰāĻŋāĻāĻāĻŋ āĻāϤāĻā§āĻā§ āϏāĻāĻā§āĻāĻŋāϤ āĻšāĻŦā§?
- \(\sqrt{\frac{m}{k}} v\)
- \(\sqrt{\frac{k}{m}} v\)
- \(\sqrt{k v}\)
- \(\sqrt{m v}\)
Ans. \(\sqrt{\frac{m}{k}} v\)
- āĻ
āĻāĻŋāĻāϰā§āώā§āϝāĻŧ āϤā§āĻŦāϰāĻŖ g āĻŦāύāĻžāĻŽ āĻĒā§āĻĨāĻŋāĻŦā§ āĻĒā§āώā§āĻ āĻšāϤ⧠āĻāĻā§āϰāϤāĻž h āĻāϰ āϞā§āĻāĻāĻŋāϤā§āϰ āĻā§āύāĻāĻŋ?
Ans.
-
- āĻāϝāĻŧāĻ āĻāϰ āĻĻā§āĻŦāĻŋ-āĻāĻŋāϰ āĻĒāϰā§āĻā§āώāĻŖā§āϰ āĻāĻŋāϰāĻĻā§āĻŦāϝāĻŧā§āϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻĻā§āϰāϤā§āĻŦ āĻšāϞ⧠d āĻāĻŦāĻ āĻāĻŋāϰāĻĻā§āĻŦāϝāĻŧ āĻĨā§āĻā§ āĻĒāϰā§āĻĻāĻž D āĻĻā§āϰāϤā§āĻŦā§ āĻ
āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
āĻĒāϰā§āĻĻāĻžāϰ āĻāĻĒāϰ āĻĒā§āϰāϤāĻŋ āĻāĻāĻ āĻĒā§āϰāϏā§āĻĨā§ āĻĄā§āϰāĻžāϰ āϏāĻāĻā§āϝāĻž āĻšāϞā§-- \(\frac{D}{d \lambda}\)
- \(\frac{d}{D \lambda}\)
- \(\frac{\lambda}{D d}\)
- \(\frac{d^{2}}{\lambda D^{3}}\)
Ans. \(\frac{d}{D \lambda}\)
- āĻāĻāĻāĻŋ āĻŦāϏā§āϤ⧠12 m āĻŦā§āϝāĻžāϏāĻžāϰā§āϧā§āϰ āĻāĻāĻāĻŋ āĻŦā§āϤā§āϤāĻžāĻāĻžāϰ āĻĒāĻĨā§ āĻāϞāĻŽāĻžāύ āĻāĻā§āĨ¤ āĻāĻāĻāĻŋ āĻŽā§āĻšā§āϰā§āϤ⧠āĻŦā§āϤā§āϤāĻžāĻāĻžāϰ āĻĒāĻĨā§ āĻāϰ āĻĻā§āϰā§āϤāĻŋ
6 m/s āĻāĻŦāĻ āĻāĻāĻŋ \(4 \mathrm{~m} / \mathrm{s}^{2}\) āĻšāĻžāϰ⧠āĻŦā§āĻĻā§āϧāĻŋ āĻĒāĻžāĻā§āĻā§āĨ¤ āĻ āĻŽā§āĻšā§āϰā§āϤ⧠āĻŦāϏā§āϤā§āĻāĻŋāϰ āϤā§āĻŦāϰāĻŖā§āϰ āĻŽāĻžāύ āĻāϤ?- \(2 \mathrm{~m} / \mathrm{s}^{2}\)
- \(3 \mathrm{~m} / \mathrm{s}^{2}\)
- \(4 \mathrm{~m} / \mathrm{s}^{2}\)
- \(5 \mathrm{~m} / \mathrm{s}^{2}\)
Ans. \(5 \mathrm{~m} / \mathrm{s}^{2}\)
āĻĒāĻĻāĻžāϰā§āĻĨāĻŦāĻŋāĻā§āĻāĻžāύ āϞāĻŋāĻāĻŋāϤ āĻ āĻāĻļ
ā§§āĨ¤āĻāĻāĻāύ āĻŦāĻžāĻāϏāĻžāĻāĻā§āϞ āĻāϰā§āĻšā§ āϏāĻŽāϤāϞ āĻŦāĻā§āϰ āĻĒāĻĨā§ v āĻŦā§āĻā§ āĻā§āϰāĻŽāĻŖ āĻāϰāĻā§āĨ¤ āϏāĻžāĻāĻā§āϞā§āϰ āĻāĻžāĻāĻž āĻāĻŦāĻ āĻĒāĻĨā§āϰ āĻŽāϧā§āϝāĻāĻžāϰ āϏā§āĻĨāĻŋāϤāĻŋ āĻāϰā§āώāύ āĻā§āύāĻžāĻāĻ \(\mu_{s}=0.50\)āĨ¤ āϏāĻžāĻāĻā§āϞā§āϰ āĻāĻĒāϰ āĻā§āϰāĻŋāϝāĻŧāĻžāϰāϤ āĻŦāϞ āϏāĻŽā§āĻšā§āϰ āύāĻžāĻŽ āϞāĻŋāĻāĨ¤ āϝāĻĻāĻŋ āĻŦā§āĻ v = 10 m/s āĻšāϝāĻŧ, āϤāĻŦā§ āϏāϰā§āĻŦāύāĻŋāĻŽā§āύ āĻāϤ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧā§āϰ āĻŦā§āϤā§āϤāĻžāĻāĻžāϰ āĻĒāĻĨā§ āĻāϰā§āĻšā§āĻāĻŋ āĻā§āϰāĻŽāĻŖ āĻāϰāϤ⧠āĻĒāĻžāϰāĻŦā§?
āĻā§āϰāĻŋā§āĻžāϰāϤ āĻŦāϞāϏāĻŽā§āĻš:
- āĻāĻāύ
- āĻāϰā§āώāĻŖ āĻŦāϞ
- āϤāϞā§āϰ āĻāϞā§āϞāĻŽā§āĻŦ āĻĒā§āϰāϤāĻŋāĻā§āϰāĻŋā§āĻž
āĻā§āύā§āĻĻā§āϰāĻŽā§āĻā§ āĻŦāϞ = āĻāϰā§āώāĻŖ āĻŦāϞ
āĻŦāĻž, \(\frac{m v^{2}}{r}=\mu R\)
āĻŦāĻž, \(\frac{m v^{2}}{r}=\mu m g\)
āĻŦāĻž, \(\frac{v^{2}}{r}=\mu g\)
āĻŦāĻž, \(r=\frac{v^{2}}{\mu g}\)
āĻŦāĻž, \(r=\frac{10^{2}}{0.5 \times 10}\)
\(\therefore r=20 m\) (Ans.)
⧍āĨ¤ āĻāĻāĻāĻŋ āĻāϤā§āϤāϞ āϞā§āύā§āϏā§āϰ āĻĢā§āĻāĻžāϏ āĻĻā§āϰāϤā§āĻŦ 10 cmāĨ¤ āϞā§āύā§āϏā§āϰ āĻŦāĻžāĻŽ āĻĒāĻžāĻļā§ 30 cm āĻĻā§āϰ⧠āĻāĻāĻāĻŋ āĻŦāϏā§āϤ⧠āϰāĻžāĻāĻž āĻšāϞā§āĨ¤
āĻĒā§āϰāϤāĻŋāĻŦāĻŋāĻŽā§āĻŦā§āϰ āĻ
āĻŦāϏā§āĻĨāĻžāύ, āĻĒā§āϰāĻā§āϤāĻŋ āĻ āĻŦāĻŋāĻŦāϰā§āϧāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤
\(f=10 \mathrm{~cm}\)
\(u=30 \mathrm{~cm}\)
\(\frac{1}{v}+\frac{1}{u}=\frac{1}{f}\)
āĻŦāĻž, \(\frac{1}{v}=\frac{1}{f}-\frac{1}{u}\)
āĻŦāĻž, \(\frac{1}{v}=\frac{1}{10}-\frac{1}{30}\)
āĻŦāĻž, \(\frac{1}{v}=\frac{3-1}{30}\)
āĻŦāĻž, \(\frac{1}{v}=\frac{2}{30}\)
āĻŦāĻž, \(\frac{1}{v}=\frac{1}{15}\)
āĻŦāĻž, \(v=15\)
āĻŦāĻž, āĻŦāĻŋāĻŦāϰā§āϧāύ, \(m=-\frac{v}{u}\)
\(=-\frac{15}{30}\)
\(=-0.5\)
āĻŦāĻžāϏā§āϤāĻŦ, āĻāϞā§āĻā§, āĻāϰā§āĻŦāĻŋāϤ āĻŦāĻŋāĻŽā§āĻŦ āĻāĻ āĻŋāϤ āĻšāĻŦā§āĨ¤
ā§ŠāĨ¤ āĻāĻŋāϤā§āϰā§āϰ āĻŦāϰā§āϤāύā§āĻāĻŋāϰ \(4.0 \Omega\) āϰā§āϧā§āϰ āĻĒā§āϰāĻžāύā§āϤāĻĻā§āĻŦāϝāĻŧā§āϰ āĻŽāϧā§āϝ⧠āĻŦāĻŋāĻāĻŦ āĻĒāĻžāϰā§āĻĨāĻā§āϝ āĻāϤ āĻšāĻŦā§?
\(R=\frac{2}{3}+\left(\frac{1}{2}+\frac{1}{4}\right)^{-1}\)
\(R=\frac{2}{3}+\left(\frac{2+1}{4}\right)^{-1}\)
\(=\frac{2}{3}+\frac{4}{3}\)
\(=\frac{2+4}{3}\)
\(=2 \Omega\)
\(I=\frac{V}{R}=\frac{2}{2}=1 A\)
\(\frac{2}{3} \Omega\) āϰā§āϧā§āϰ āĻŦāĻŋāĻāĻŦ, \(V_{\frac{2}{3}}=\frac{2}{3} \times 1=\frac{2}{3} V\)
\(4.0 \Omega\) āϰā§āϧā§āϰ āĻŦāĻŋāĻāĻŦ \(=2-\frac{2}{3}\)
\(=\frac{6-2}{3}\)
\(=\frac{4}{3} V\)
ā§ĒāĨ¤ āĻāĻāĻāĻŋ āĻāĻžāϰā§āύ⧠āĻāĻā§āĻāĻŋāύ \(T_{H}=900 \mathrm{~K}\) āĻāĻŦāĻ \(T_{L}=300 \mathrm{~K}\) āϤāĻžāĻĒāĻŽāĻžāϤā§āϰāĻžāϰ āĻŽāϧā§āϝ⧠āĻāĻžāϰā§āϝāϰāϤāĨ¤ āĻāĻā§āĻāĻŋāύāĻāĻŋ āĻĒā§āϰāϤāĻŋ āĻāĻā§āϰ⧠0.25 s
āϏāĻŽāϝāĻŧā§ 1200 J āĻāĻžāĻ āĻāϰā§āĨ¤ āĻāĻā§āĻ āϤāĻžāĻĒāĻŽāĻžāϤā§āϰāĻžāϝāĻŧ āϧāĻžāϰāĻ āĻĨā§āĻā§ āĻļāĻā§āϤāĻŋ āϏā§āĻĨāĻžāύāĻžāύā§āϤāϰā§āϰ āĻĢāϞ⧠āĻāϰ āĻāĻžāϰā§āϝāĻāϰ⧠āĻĒāĻĻāĻžāϰā§āĻĨā§āϰ (āĻ
āϰā§āĻĨāĻžā§ āĻāĻĻāϰā§āĻļ āĻā§āϝāĻžāϏā§āϰ) āĻāύāĻā§āϰāĻĒāĻŋ āĻŦā§āĻĻā§āϧāĻŋ āĻŦā§āϰ āĻāϰāĨ¤
\(\frac{T_{H}}{T_{L}}=\frac{Q_{H}}{Q_{L}}\)
āĻŦāĻž, \(\frac{900}{300}=\frac{Q_{H}}{Q_{L}}\)
āĻŦāĻž, \(Q_{H}=3 Q_{L}\)
\(W=Q_{H}-Q_{L}\)
āĻŦāĻž, \(1200=3 Q_{L}-Q_{L}\)
āĻŦāĻž, \(1200=2 Q_{L}\)
\(Q_{L}=600 \mathrm{~J}\)
\(\therefore Q_{H}=3 \times 600=1800 \mathrm{~J}\)
\(\Delta S_{H}=\frac{Q_{H}}{T_{H}}\)
\(=\frac{1800}{900} \mathrm{JK}^{-1}\)
\(=2 \mathrm{JK}^{-1}\)
\(=2 \times 4 w k^{-1}\)
\(=8 w k^{-1}\)
āϰāϏāĻžā§āύ
-
āĻŦāĻŋāĻļā§āĻĻā§āϧ āĻĒāĻžāύāĻŋāϤ⧠\(\mathrm{OH}^{-}\) āĻāĻŦāĻ \(\mathrm{H}^{+}\) āĻāϰ āĻŽā§āϞāĻžāϰ āĻāύāĻŽāĻžāϤā§āϰāĻž āĻāϰ āĻ
āύā§āĻĒāĻžāϤ āĻāϤ?
- 7
- \(10^{-7}\)
- 0
- 1
Ans. 1
-
āĻ āώā§āĻāĻ āϏāĻŽā§āĻĒā§āϰāϏāĻžāϰāĻŖ āĻāϰ āĻāĻĻāĻžāĻšāϰāĻŖ āĻā§āύāĻāĻŋ?
- \(\mathrm{BeCl}_{2}\)
- \(\mathrm{PCl}_{5}\)
- \(\mathrm{BCl}_{3}\)
- \(\mathrm{Cl}_{2}\)
Ans. \(\mathrm{PCl}_{5}\)
- āύāĻŋāĻā§āϰ āĻā§āύ āϤāĻĄāĻŧāĻŋā§āĻĻā§āĻŦāĻžāϰāĻāĻŋāϰ āĻĒā§āϰāĻŽāĻžāĻŖ āĻŦāĻŋāĻāĻžāϰāĻŖ āĻŦāĻŋāĻāĻŦā§āϰ āĻŽāĻžāύ āϏāĻŦāĻā§āϝāĻŧā§ āĻāĻŽ?
- \(\mathrm{H}^{+}(\mathrm{aq}) / \mathrm{H}_{2}(\mathrm{~g}), \mathrm{Pt}\)
- \(\mathrm{Cu}^{2+}(\mathrm{aq}) / \mathrm{Cu}(\mathrm{s})\)
- \(\mathrm{Na}^{+}(\mathrm{aq}) / \mathrm{Na}(\mathrm{s})\)
- \(\mathrm{Pt}(\mathrm{s}) / \mathrm{F}(\mathrm{g}) / \mathrm{F}^{-}(\mathrm{aq})\)
Ans. \(\mathrm{Na}^{+}(\mathrm{aq}) / \mathrm{Na}(\mathrm{s})\)
- aA â bB āĻŦāĻŋāĻā§āϰāĻŋā§āĻžāĻāĻŋāϰ āĻā§āώā§āϤā§āϰ⧠āĻā§āύāĻāĻŋ āĻŦāĻŋāĻā§āϰāĻŋā§āĻžāϰ āĻšāĻžāϰ āύāĻŋāϰā§āĻĻā§āĻļ āĻāϰā§?
- \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d} t}\)
- \(-\frac{1}{a} \frac{d[A]}{d t}\)
- \(-\frac{d[B]}{d t}\)
- \(-\frac{1}{b} \frac{d[A]}{d t}\)
Ans. \(-\frac{1}{a} \frac{d[A]}{d t}\)
- āĻĻā§āϧā§āϰ āĻĒā§āϰā§āĻāĻŋāύ āĻā§āύāĻāĻŋ?
- āĻā§āϝāĻžāϰā§āĻāĻŋāύ
- āϞāĻŋāĻĒāĻŋāĻĄ
- āĻā§āϝāĻžāϏāĻŋāύ
- āϞā§āϝāĻžāĻā§āĻāĻžāĻ ā§āϝāĻžāϞāĻŦā§āĻŽāĻŋāύ
Ans. āĻā§āϝāĻžāϏāĻŋāύ
- āύāĻŋāĻā§āϰ āĻā§āύ āϝā§āĻāĻāĻŋ āϏāĻŋāϞāĻāĻžāϰ āĻĻāϰā§āĻĒāĻŖ āĻĒāϰā§āĻā§āώāĻž āĻĻā§āϝāĻŧ?
- āĻĒā§āϰāĻĒāĻžāύā§āύ
- āĻĒā§āϰāĻĒāĻŋāύ
- āĻĒā§āϰāĻĒāĻžāύāϞ
- āĻĒā§āϰāĻĒāĻžāύā§āϝāĻžāϞ
Ans. āĻĒā§āϰāĻĒāĻžāύā§āϝāĻžāϞ
- āĻŦā§āύāĻāĻŋāύ āĻŦāϞāϝāĻŧ āϏāĻā§āϰāĻŋāϝāĻŧāĻāĻžāϰ⧠āĻŽā§āϞāĻ āĻā§āύāĻāĻŋ?
- \(-\mathrm{NH}_{2}\)
- \(-\mathrm{NO}_{2}\)
- -CHO
- \(-\mathrm{SO}_{3} \mathrm{H}\)
Ans. \(-\mathrm{NH}_{2}\)
- NaCl-āĻāϰ āϏāĻžāĻĨā§ \(\mathrm{H}_{2} \mathrm{O}\) āϝā§āĻ āĻāϰāϞ⧠āĻā§āύāĻāĻŋ āĻāĻā§?
- \(\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})\)
- \(\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq})\)
- \(\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})\)
- \(\mathrm{Na}^{+}+\mathrm{Cl}^{-}\)
Ans. \(\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})\)
- āĻšāĻžāĻāĻĄā§āϰā§āύāĻŋāϝāĻŧāĻžāĻŽ āĻāϝāĻŧāύ⧠āĻā§āύ āĻā§āύ āĻŦāύā§āϧāύ āĻŦāĻŋāĻĻā§āϝāĻŽāĻžāύ?
- āĻāϝāĻŧāύāĻŋāĻ āĻ āϏāĻŽāϝā§āĻā§ āĻŦāύā§āϧāύ
- āĻāϝāĻŧāύāĻŋāĻ āĻ āϏāύā§āύāĻŋāĻŦā§āĻļ āĻŦāύā§āϧāύ
- āϏāĻŽāϝā§āĻā§ āĻ āϏāύā§āύāĻŋāĻŦā§āĻļ āĻŦāύā§āϧāύ
- āĻāϝāĻŧāύāĻŋāĻ āĻ āĻšāĻžāĻāĻĄā§āϰā§āĻā§āύ āĻŦāύā§āϧāύ
Ans. āϏāĻŽāϝā§āĻā§ āĻ āϏāύā§āύāĻŋāĻŦā§āĻļ āĻŦāύā§āϧāύ
- āύāĻŋāĻā§āϰ āĻā§āύāĻāĻŋ āϏāϤā§āϝ āύāϝāĻŧ?
- \(\mathrm{K}_{w}=1 \times 10^{-14}\)
- \(\mathrm{pK}_{w}=14\)
- \(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{w}\)
- \(K_{w}=1 \times 10^{14} M\)
Ans. \(K_{w}=1 \times 10^{14} M\)
- āĻā§āϰā§āĻŽāĻŋāĻ āĻāϏāĻŋāĻĄ āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻāĻāĻĒāĻžāϤā§āϰ āĻĒāϰāĻŋāώā§āĻāĻžāϰ āĻāϰāĻžāϰ āϏāĻŽāϝāĻŧ āĻā§āύ āϧāϰāύā§āϰ āĻŦāĻŋāĻā§āϰāĻŋāϝāĻŧāĻž āĻāĻā§?
- āĻāĻžāϰāĻŖ
- āĻĒā§āϰāϤāĻŋāϏā§āĻĨāĻžāĻĒāύ
- āĻĒā§āϰāĻļāĻŽāύ
- āĻŦāĻŋāĻāĻžāϰāĻŖ
Ans. āĻāĻžāϰāĻŖ
- As- āĻ āĻā§āĻāĻŋ āϝā§āĻžāĻāύ āĻāϞā§āĻāĻā§āϰāύ āĻāĻā§?
- 3
- 4
- 5
- 6
Ans. 5
-
āĻ
ā§āϝāĻžāϞāĻāĻžāĻāϞ āĻšā§āϝāĻžāϞāĻžāĻāĻĄā§āϰ E2 āĻ
āĻĒāϏāĻžāϰāĻŖ āĻŦāĻŋāĻā§āϰāĻŋā§āĻžā§, āĻ
ā§āϝāĻžāϞāĻā§āĻšāϞāĻŋāĻ KOH/NaOH āĻāϰ āĻā§āĻŽāĻŋāĻāĻž āĻšāϞā§-
- āĻā§āώāĻžāϰ
- āĻĻā§āϰāĻžāĻŦāĻ
- āĻ āύā§āĻāĻāĻ
- āύāĻŋāĻāĻā§āϞāĻŋāĻāĻĢāĻžāĻāϞ
Ans. āĻā§āώāĻžāϰ
- \(\mathrm{R}_{\mathrm{H}}\) āϰāĻŋāĻĄāĻŦāĻžāϰā§āĻ āϧā§āϰā§āĻŦāĻ āĻšāϞā§, āĻšāĻžāĻāĻĄā§āϰā§āĻā§āύ āĻĒāϰāĻŽāĻžāĻŖā§āϰ āĻŦāϰā§āĻŖāĻžāϞāĻŋāϤ⧠āĻŦāĻžāĻŽāĻžāϰ āϏāĻŋāϰāĻŋāĻā§āϰ āĻāύā§āϝ āϏāϰā§āĻŦāύāĻŋāĻŽā§āύ āĻāϤ āϤāϰāĻā§āĻ, āϏāĻāĻā§āϝāĻžāϰ āϰāĻļā§āĻŽāĻŋ āĻŦāĻŋāĻāĻŋāϰāĻŋāϤ āĻšā§?
- \(\frac{3}{4} \mathrm{R}_{\mathrm{H}}\)
- \(\frac{5}{36} \mathrm{R}_{\mathrm{H}}\)
- \(\frac{3}{16} \mathrm{R}_{\mathrm{H}}\)
- \(\frac{9}{144} \mathrm{R}_{\mathrm{H}}\)
Ans. \(\frac{5}{36} \mathrm{R}_{\mathrm{H}}\)
-
āύāĻŋāĻŽā§āύā§āϰ āĻŦāĻŋāĻā§āϰāĻŋā§āĻžāĻā§āϞ⧠āĻšāϤ⧠āĻāĻžāϰā§āĻŦāύā§āϰ āĻāĻŖāύāĻžāĻā§āϤ āĻĻāĻšāύ āϤāĻžāĻĒ āĻšāϞā§-
(i) \(\mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) \quad \Delta \mathrm{H}=-111 \mathrm{~kJ} / \mathrm{mol}\)
(ii) \(\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-283 \mathrm{~kJ} / \mathrm{mol}\)- 173 \(\mathrm{~kJ} / \mathrm{mol}\)
- -394 \(\mathrm{~kJ} / \mathrm{mol}\)
- 373 \(\mathrm{~kJ} / \mathrm{mol}\)
- 394 \(\mathrm{~kJ} / \mathrm{mol}\)
Ans. -394 \(\mathrm{~kJ} / \mathrm{mol}\)
āϰāϏāĻžāϝāĻŧāύ (chemistry) āϞāĻŋāĻāĻŋāϤ āĻ āĻāĻļ
ā§ĢāĨ¤ (āĻ) āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ āĻŦāύā§āϧāύ āĻā§? āύā§āϝāĻžāĻĢāĻĨāĻžāϞāĻŋāύ āĻ
āĻŖā§āϤ⧠āĻāϝāĻŧāĻāĻŋ āĻāĻŦāĻ āĻā§ āĻā§ āĻŦāύā§āϧāύ āĻŦāĻŋāĻĻā§āϝāĻŽāĻžāύ?
āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ āĻŦāύā§āϧāύ: āĻāĻāĻāĻŋ āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ āĻŦāύā§āϧāύ āĻĒāϰāĻŽāĻžāĻŖā§, āĻāϝāĻŧāύ āĻŦāĻž āĻ
āĻŖā§āϰ āĻŽāϧā§āϝ⧠āĻāĻāĻāĻŋ āϏā§āĻĨāĻžāϝāĻŧā§ āĻāĻāϰā§āώāĻŖ āϝāĻž āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ āϝā§āĻ āĻāĻ āύ āĻāϰā§āĨ¤
āύā§āϝāĻžāĻĢāĻĨāĻžāϞāĻŋāύ āĻ
āĻŖā§āϤ⧠āĻŽā§āĻ 24āĻāĻŋ āĻŦāύā§āϧāύ āϰā§ā§āĻā§ āϝāĻžāϰ āĻŽāϧā§āϝ⧠5āĻāĻŋ āĻĒāĻžāĻ āĻŦāύā§āϧāύ āĻāĻŦāĻ 19āĻāĻŋ āϏāĻŋāĻāĻŽāĻž āĻŦāύā§āϧāύāĨ¤
(āĻ) āĻĒā§āϰāĻžāĻāĻŽāĻžāϰāĻŋ, āϏā§āĻā§āύā§āĻĄāĻžāϰāĻŋ āĻ āĻāĻžāϰāϏāĻŋāϝāĻŧāĻžāϰāĻŋ āĻ
ā§āϝāĻžāϞāĻā§āĻšāϞāĻā§ āĻā§āĻāĻžāĻŦā§ āĻāϞāĻžāĻĻāĻž āĻāϰāĻž āϝāĻžāϝāĻŧ?
āĻāĻžā§ HCl āĻ \(ZnCl_2\) āĻāϰ āĻĻā§āϰāĻŦāĻŖāĻā§ âāϞā§āĻāĻžāϏ āĻŦāĻŋāĻāĻžāϰāĻ āĻŦāϞ⧠āϝāĻž \(3^o\) āĻ ā§āϝāĻžāϞāĻā§āĻšāϞā§āϰ āϏāĻžāĻĨā§ āĻŦāĻŋāĻā§āϰāĻŋā§āĻžāϰ āĻāϰ⧠āϏāĻžāĻĨā§ āϏāĻžāĻĨā§āĻ āĻ ā§āϝāĻžāϞāĻāĻžāĻāϞ āĻā§āϞā§āϰāĻžāĻāĻĄā§āϰ āϏāĻžāĻĻāĻž āĻ āϧ:āĻā§āώā§āĻĒ āϤā§āϰāĻŋ āĻāϰā§, \(2^o\) āĻ ā§āϝāĻžāϞāĻā§āĻšāϞā§āϰ āϏāĻžāĻĨā§ āĻāϏā§āϤ⧠āĻāϏā§āϤ⧠āĻŦāĻŋāĻā§āϰāĻŋā§āĻžāϰ āĻāϰā§(5-10 āĻŽāĻŋāύāĻŋāĻā§) āĻ ā§āϝāĻžāϞāĻāĻžāĻāϞ āĻā§āϞā§āϰāĻžāĻāĻĄā§āϰ āĻ āϧ:āĻā§āώā§āĻĒ āϤā§āϰāĻŋ āĻāϰ⧠āĻāĻŦāĻ \(1^o\) āĻ ā§āϝāĻžāϞāĻā§āĻšāϞā§āϰ āϏāĻžāĻĨā§ āĻāĻā§āώ āϤāĻžāĻĒāĻŽāĻžāϤā§āϰāĻžā§ āĻā§āύ āĻŦāĻŋāĻā§āϰāĻŋā§āĻžāϰ āĻāϰ⧠āύāĻž āϤāĻŦā§ āĻŽāĻŋāĻļā§āϰāĻŖāĻā§ āĻāϤā§āϤāĻĒā§āϤ āĻāϰāϞ⧠āĻ āϤ⧠āϧā§āϰ⧠āĻ ā§āϝāĻžāϞāĻāĻžāĻāϞ āĻā§āϞā§āϰāĻžāĻāĻĄ āϤā§āϰāĻŋ āĻāϰā§āĨ¤
ā§ŦāĨ¤ āĻ āϰāĻŦāĻŋāĻāĻžāϞ āĻā§? āĻĒāĻžāĻāĻāĻāĻŋ d-āĻ āϰāĻŦāĻŋāĻāĻžāϞā§āϰ āύāĻžāĻŽ āϞāĻŋāĻ āĻāĻŦāĻ āĻāĻĻā§āϰ āĻĻā§āĻŦāĻŋ-āĻŽāĻžāϤā§āϰāĻŋāĻ āĻāĻŋāϤā§āϰ āĻ āĻāĻāύ āĻāϰāĨ¤ āϤāĻĄāĻŧāĻŋā§ āĻāĻŖāĻžāϤā§āĻŽāĻāϤāĻž āĻāĻŦāĻ āĻāϞā§āĻā§āĻā§āϰāύ āĻāϏāĻā§āϤāĻŋāϰ āĻŽāϧā§āϝ⧠āĻĒā§āϰāϧāĻžāύ āĻĒāĻžāϰā§āĻĨāĻā§āϝ āĻā§?
āĻ
āϰāĻŦāĻŋāĻāĻžāϞ:āύāĻŋāĻāĻā§āϞāĻŋāϝāĻŧāĻžāϏā§āϰ āĻāϤā§āϰā§āĻĻāĻŋāĻā§ āĻāϞā§āĻāĻā§āϰāύā§āϰ āĻāĻŦāϰā§āϤāύā§āϰ āϏāϰā§āĻŦāĻžāϧāĻŋāĻ āϏāĻŽā§āĻāĻžāĻŦā§āϝ āĻ
āĻā§āĻāϞāĻā§ āĻ
āϰāĻŦāĻŋāĻāĻžāϞ āĻŦāϞā§āĨ¤
āĻā§āϝāĻžāϏā§āϝāĻŧ āĻ āĻŦāϏā§āĻĨāĻžāϝāĻŧ āĻā§āύ⧠āĻŽā§āϞā§āϰ āĻāĻ āĻŽā§āϞ āĻā§āϝāĻžāϏā§āϝāĻŧ āĻĒāϰāĻŽāĻžāĻŖā§āϤ⧠āĻāĻ āĻŽā§āϞ āĻāϞā§āĻāĻā§āϰāύ āĻĒā§āϰāĻŦā§āĻļ āĻāϰāĻŋāϝāĻŧā§ āĻāĻ āĻŽā§āϞ āĻāĻŖāĻžāϤā§āĻŽāĻ āĻāϝāĻŧāύ⧠āĻĒāϰāĻŋāĻŖāϤ āĻāϰāϤ⧠āϝ⧠āĻļāĻā§āϤāĻŋ āĻĻāϰāĻāĻžāϰ, āϤāĻžāĻā§ āĻ āĻŽā§āϞā§āϰ āĻāϞā§āĻāĻā§āϰāύ āĻāϏāĻā§āϤāĻŋ āĻŦāϞā§āĨ¤ āĻāϰ āĻĻā§āĻāĻŋ āĻĒāϰāĻŽāĻžāĻŖā§ āϝāĻāύ āϏāĻŽāϝā§āĻā§ āĻŦāύā§āϧāύ⧠āĻāĻŦāĻĻā§āϧ āĻšāϝāĻŧ āϤāĻāύ āĻ āĻŖā§āϰ āĻĒāϰāĻŽāĻžāĻŖā§āĻā§āϞ⧠āĻŦāύā§āϧāύā§āϰ āĻāϞā§āĻāĻā§āϰāύ āĻĻā§āĻāĻŋāĻā§ āύāĻŋāĻā§āϰ āĻĻāĻŋāĻā§ āĻāĻāϰā§āώāĻŖ āĻāϰā§āĨ¤ āĻāĻ āĻāĻāϰā§āώāĻŖāĻā§ āϤāĻĄāĻŧāĻŋā§ āĻāĻŖāĻžāϤā§āĻŽāĻāϤāĻž āĻŦāϞā§āĨ¤
ā§āĨ¤(āĻ)
(i) \(\mathrm{X} \stackrel{\mathrm{K} \mathrm{O} \mathrm{H}(\mathrm{aq})}{\longrightarrow} \mathrm{Y} \stackrel{[0]}{\rightarrow} \mathrm{Z}\)
(ii) \(\mathrm{Z}+2,4-\mathrm{DNPH} \rightarrow\) Yellow precipitate
(iii) \(\mathrm{Z}+\) Fehling solution \(\rightarrow\) No change
(iv) \(X\) is the isomer of \(C_{4} H_{9} B r\)
āĻāĻĒāϰā§āϰ āϤāĻĨā§āϝāĻā§āϞ⧠āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āĻāĻĒāϝā§āĻā§āϤ āϝā§āĻā§āϤāĻŋāϏāĻš X, Y āĻāĻŦāĻ Z āĻāϰ āĻāĻžāĻ āύāĻŋāĻ āϏāĻāĻā§āϤ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤
(ii) āύāĻ āĻļāϰā§āϤāĻŽāϤ⧠z āĻāĻāĻāĻŋ āĻāĻžāϰā§āĻŦāύāĻŋāϞ āϝā§āĻ āĻāĻŦāĻ (iii) āύāĻ āĻļāϰā§āϤ āĻšāϤ⧠āĻŦā§āĻāĻž āϝāĻžā§ āϤāĻž āĻāĻŋāĻā§āύāĨ¤ (iv) āύāĻ āĻļāϰā§āϤāĻŽāϤ⧠\(X\) āĻšāϞ⧠\(C_{4} H_{9} B r\) āĻāϰ āϏāĻŽāĻžāĻŖā§ āĻĒāϰāĻŦāϰā§āϤā§āϤ⧠āϝāĻž āĻšāϤ⧠āĻ
ā§āϝāĻžāϞāĻā§āĻšāϞ Y āĻāĻŦāĻ āĻāĻŋāĻā§āύ Z āĻā§āĻĒāύā§āύ āĻšā§ āϤāĻžāĻ X āĻ Br āĻ
āĻŦāĻļā§āϝāĻ 2 āύ⧠āĻāĻžāϰā§āĻŦāύ⧠āĻāĻā§āĨ¤
X āĻšāϞā§: \(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CHBr}-\mathrm{CH}_{3}\)
Y āĻšāϞā§:\(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}\)
Z āĻšāϞā§:\(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{CH}_{3}\)
(āĻ) āϞāĻŦāύ āϏā§āϤ⧠āĻ āϤāĻĄāĻŧāĻŋā§āĻĻā§āĻŦāĻžāϰ \(\left[(\mathrm{i}) \mathrm{Fe}^{2+}(\mathrm{aq}) / \mathrm{Fe}(\mathrm{s})=-0.44 \mathrm{~V} \text { āĻāĻŦāĻ (ii) } \mathrm{Cu}^{2+}(\mathrm{aq}) / \mathrm{Cu}(\mathrm{s})=0.34 \mathrm{~V}\right]\) āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§, āϤāĻĄāĻŧāĻŋā§ āĻā§āώāĻāĻŋāϰ āĻāĻŋāϤā§āϰ āĻ āĻā§āĻāύ āĻāϰ āĻāĻŦāĻ āĻā§āώā§āϰ emf āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤
āĻā§āώ āĻŦāĻŋāĻā§āϰāĻŋā§āĻž: \(F e / F e^{2+} \| C u^{2+} / C u\)
\(E_{\text {cell }}^{o}=E_{F e}^{o} / F e^{2+}+E_{C u^{2+}}^{o} / C u\)
\(=0.44+0.34\)
\(=0.78 \mathrm{~V}\)
ā§ŽāĨ¤ āĻāĻĨāĻžāύāϝāĻŧāĻŋāĻ āĻāϏāĻŋāĻĄā§āϰ āĻāϞā§āϝāĻŧ āĻĻā§āϰāĻŦāĻŖā§āϰ āĻŦāĻŋā§ā§āĻāύ āϏāĻžāĻŽā§āϝāĻŦāϏā§āĻĨāĻž āĻĻā§āĻāĻžāĻ āĻāĻŦāĻ āĻāϰ \(\mathrm{K}_{\mathrm{a}}\) āϏāĻāĻā§āĻāĻžāϝāĻŧāĻŋāϤ āĻāϰāĨ¤ āĻā§āύ āĻļāϰā§āϤā§,
\(\mathrm{pK}_{\mathrm{a}}=\mathrm{pH}\) āĻšāĻŦā§, āĻĒā§āϰā§ā§āĻāύā§āϝāĻŧ āϏāĻŽā§āĻāϰāĻŖāϏāĻš āĻŦā§āϝāĻžāĻā§āϝāĻž āĻāϰāĨ¤
\(\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}\)
\(K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\)
\(p H=p k_{a}+\log \frac{[\text { Salt }]}{[\text { Acid }]}\)
\(p H=p k_{a}\) āĻšāĻŦā§ āϝāĻĻāĻŋ,
\(\log \frac{[\text { Salt }]}{[\text { Acid }]}=0\)
āĻŦāĻž, \(\log \frac{[\text { Salt }]}{[\text { Acid }]}=\log 1\)
āĻŦāĻž, \(\frac{[\text { Salt }]}{[\text { Acid }]}=1\)
āĻŦāĻž, \([\) Salt \(]=[\) Acid \(]\)
āĻāĻā§āĻāϤāϰ āĻāĻŖāĻŋāϤ
-
\(2 x=y^{2}+8 y+22\) āĻĒāϰāĻžāĻŦā§āϤā§āϤā§āϰ āĻļā§āϰā§āώāĻŦāĻŋāύā§āĻĻā§āϰ āϏā§āĻĨāĻžāύāĻžāĻāĻ āĻšāĻŦā§-
- (3,-4)
- (-3, 4)
- (-3, -4)
- (3, 4)
Ans. (3,-4)
- \(\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin ^{2} 2 x}\) āĻāϰ āĻŽāĻžāύ āĻšāĻŦā§-
- \(\frac{1}{4}\)
- \(\frac{1}{8}\)
- \(\frac{1}{2}\)
- 1
Ans. \(\frac{1}{8}\)
- \(\int_{0}^{2}|x-1| d x=?\)
- 0
- 1
- 2
- \(\frac{1}{2}\)
Ans. 1
-
āϤāĻŋāύāĻāĻŋ āĻāĻā§āĻāĻž āĻāĻāĻŦāĻžāϰ āύāĻŋāĻā§āώā§āĻĒ āĻāϰāĻž āĻšāϞ⧠āϤāĻŋāύāĻāĻŋāϤā§āĻ āĻāĻāĻ āϏāĻāĻā§āϝāĻž āĻĒāĻžāĻā§āĻžāϰ āϏāĻŽā§āĻāĻžāĻŦāύāĻž āĻāϤ?
- \(\frac{1}{18}\)
- \(\frac{1}{6}\)
- \(\frac{1}{216}\)
- \(\frac{1}{36}\)
Ans. \(\frac{1}{36}\)
- \(\frac{d}{d x}\left(\cos ^{2}(\ln x)\right)=?\)
- \(-\frac{\sin (2 \ln x)}{2}\)
- \(-\frac{2 \cos (\ln x)}{x}\)
- \(-\frac{\sin (2 \ln x)}{x}\)
- \(-2 x \cos (\ln x) \sin (\ln x)\)
Ans. \(-\frac{\sin (2 \ln x)}{x}\)
- \(f(x)=\sqrt{3-\sqrt{x-2}}\) āĻĢāĻžāĻāĻļāύāĻāĻŋāϰ āĻĄā§āĻŽā§āύ āĻāϤ?
- \(x \leq 3\)
- \(x \geq 2\)
- \(2 \leq x \leq 11\)
- \(2 \leq x \leq 3\)
Ans. \(2 \leq x \leq 11\)
- \(\operatorname{cosec} \theta+\cot \theta=\sqrt{3}(0<\theta<\pi)\) āĻšāϞ⧠\(\theta\) āĻāϰ āĻŽāĻžāύ āĻšāĻŦā§-
- \(\frac{\pi}{2}\)
- \(\frac{\pi}{3}\)
- \(\frac{\pi}{4}\)
- \(\frac{\pi}{6}\)
Ans. \(\frac{\pi}{3}\)
- āϝāĻĻāĻŋ A, B, C āĻŽā§āϝāĻžāĻā§āϰāĻŋāĻā§āϏ āϤāĻŋāύāĻāĻŋāϰ āĻāĻāĻžāϰ āϝāĻĨāĻžāĻā§āϰāĻŽā§ \(4 \times 5,5 \times 4\) āĻāĻŦāĻ \(4 \times 2\) āĻšā§, āϤāĻŦā§ \(\left(A^{T}+B\right) C\) āĻŽā§āϝāĻžāĻā§āϰāĻŋāĻā§āϏāĻāĻŋāϰ āĻāĻāĻžāϰ āĻāĻŋ?
- \(4 \times 2\)
- \(5 \times 4\)
- \(2 \times 5\)
- \(5 \times 2\)
Ans. \(5 \times 2\)
- āĻĒā§āϞāĻžāϰ āϏā§āĻĨāĻžāύāĻžāĻāĻā§ \(r^{2}-2 r \sin \theta=3\) āĻāĻāĻāĻŋ āĻŦā§āϤā§āϤā§āϰ āϏāĻŽā§āĻāϰāĻŖāĨ¤ āĻŦā§āϤā§āϤāĻāĻŋāϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ āĻšāĻŦā§-
- 2
- 3
- 4
- 6
Ans. 2
- 3N āĻ 2N āĻŽāĻžāύā§āϰ āĻĻā§āĻāĻāĻŋ āĻŦāϞā§āϰ āϞāĻĻā§āĻŦāĻŋ R āĨ¤ āĻĒā§āϰāĻĨāĻŽ āĻŦāϞā§āϰ āĻŽāĻžāύ āĻĻā§āĻŦāĻŋāĻā§āύ āĻāϰāϞ⧠āϞāĻĻā§āĻŦāĻŋāϰ āĻŽāĻžāύāĻ āĻĻā§āĻŦāĻŋāĻā§āύ āĻšā§āĨ¤ āĻŦāϞāĻĻā§āĻŦā§ā§āϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻā§āĻŖā§āϰ āĻŽāĻžāύ āĻšāĻŦā§-
- \(30^{\circ}\)
- \(120^{\circ}\)
- \(65^{\circ}\)
- \(45^{\circ}\)
Ans. \(120^{\circ}\)
- 2u āĻāĻĻāĻŋāĻŦā§āĻ āĻāĻŦāĻ āĻ
āύā§āĻā§āĻŽāĻŋāϰ āϏāĻžāĻĨā§ āϞāĻŽā§āĻŦāĻāĻžāĻŦā§ āĻĒā§āϰāĻā§āώāĻŋāĻĒā§āϤ āĻŦāϏā§āϤā§āϰ āϏāϰā§āĻŦā§āĻŦā§āĻā§āĻ āĻāĻā§āĻāϤāĻž āĻšāĻŦā§-
- \(\frac{u^{2}}{2 g}\)
- \(\frac{2 u^{2}}{g}\)
- \(\frac{u^{2}}{2 g} \sin \alpha\)
- \(\frac{u^{2}}{2 g} \cos \alpha\)
Ans. \(\frac{2 u^{2}}{g}\)
-
āϝāĻĻāĻŋ \(y=k x(2 x+\sqrt{3})\) āĻŦāĻā§āϰāϰā§āĻāĻžāϰ āĻŽā§āϞāĻŦāĻŋāύā§āĻĻā§āϤ⧠āϏā§āĻĒāϰā§āĻļāĻāĻāĻŋ \(X\) āĻ
āĻā§āώā§āϰ āϏāĻžāĻĨā§ \(30^{\circ}\) āĻā§āĻŖ āĻāϰ⧠āϤāĻžāĻšāϞ⧠K-āĻāϰ āĻŽāĻžāύ āĻāϤ āĻšāĻŦā§?
- \(\frac{1}{3}\)
- \(\sqrt{3}\)
- \(\frac{1}{\sqrt{3}}\)
- \(\frac{1}{2}\)
Ans. \(\frac{1}{3}\)
-
\(x=a \cos \theta+b \sin \theta, y=a \sin \theta-b \cos \theta\) āĻā§āύ āĻā§āύāĻŋāĻā§āϰ āϏāĻŽā§āĻāϰāĻŖ?
- ellipse
- parabola
- circle
- hyperbola
Ans. circle
- \(x^{2}-2 x+1=0\) āϏāĻŽā§āĻāϰāĻŖāĻāĻŋāϰ āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āϤā§āϰāĻŋāĻāĻžāϤ āĻāϰ āϏāĻŽāώā§āĻāĻŋ āĻšāϞā§-
- -3
- 3
- -2
- 2
Ans. 2
- \((1+x)^{7}(1-x)^{8}\) āĻāϰ āĻŦāĻŋāϏā§āϤā§āϤāĻŋāϤ⧠\(x^{7}\) āĻāϰ āϏāĻšāĻ āĻšāϞā§-
- 15
- 30
- 25
- 35
Ans. 35
āĻāĻŖāĻŋāϤ (Mathematics) āϞāĻŋāĻāĻŋāϤ āĻ āĻāĻļ
⧝⧎ \(x^{3}-3 x^{2}+7 x-5=0\) āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻāĻāĻāĻŋ āĻŽā§āϞ \((1+2 i)\) āĻšāϞ⧠āĻ āύā§āϝ āĻŽā§āϞāĻā§āϞ⧠āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤
āĻāĻāĻāĻŋ āĻŽā§āϞ \((1+2 i)\) āĻšāϞ⧠āĻ
āĻĒāϰ āĻŽā§āϞ \((1-2 i)\)
\((1+2 i)\) āĻ \((1-2 i)\) āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ,
\(x^2-2x+5=0\)
āĻĒā§āϰāĻĻāϤā§āϤ āϏāĻŽā§āĻāϰāĻŖ,
\(x^{3}-3 x^{2}+7 x-5=0\)
āĻŦāĻž, \(x^{3}-2 x^{2}+5x-x^{2}+2 x-5=0\)
āĻŦāĻž, \(x(x^2-2x+5)-1(x^2-2x+5))=0\)
āĻŦāĻž, \((x^2-2x+5)(x-1)=0\)
āĻŦāĻž, \(x=1,1+2 i,1-2 i\)
ā§§ā§Ļ⧎ \(y=x^{2}\) āĻāĻŦāĻ \(x=y^{2}\) āĻĻā§āĻŦāĻžāϰāĻž āϏā§āĻŽāĻžāĻŦāĻĻā§āϧ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤
\(y=x^{2}\) āĻāĻŦāĻ \(x=y^{2}\) āĻšāϤ⧠āĻĒāĻžāĻ,
\(x^4=x\)
āĻŦāĻž, \(x^4-x=0\)
āĻŦāĻž, \(x(x^3-1)=0\)
āĻŦāĻž, \(x=0,1\)
āĻā§āώā§āϤā§āϰāĻĢāϞ \(=\int\left(y_{1}-y_{2}\right) d x\)
\(=\int_{0}^{1}\left(x^{\frac{1}{2}}-x^{2}\right) d x\)
\(=\left[\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{x^{2+1}}{2+1}\right]_{0}^{1}\)
\(=\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{3}}{3}\right]_{0}^{1}\)
\(=\frac{2}{3}-\frac{1}{3}\)
\(=\frac{1}{3}\) āĻŦāϰā§āĻ āĻāĻāĻ
ā§§ā§§āĨ¤ āĻĻā§āĻāĻžāĻ āϝā§, \(\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\)
\(\tan ^{-1} x=A \quad \therefore x=\tan A\)
\(\tan ^{-1} y=B \quad \therefore y=\tan B\)
\(\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}\)
\(=\frac{x+y}{1-x y}\)
\(A+B=\tan ^{-1} \frac{x+y}{1-x y}\)
\(\therefore \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\)
⧧⧍āĨ¤ \(5 x_{1}+10 x_{2} \leq 50, x_{1}+x_{2} \geq 1, x_{2} \leq 4, x_{1} \geq 0, x_{2} \geq 0\) āĻļāϰā§āϤāĻžāĻŦāϞ⧠āϏāĻžāĻĒā§āĻā§āώ⧠\(2 x_{1}+7 x_{2}\) āĻāϰ āϞāĻāĻŋāώā§āĻ āĻŽāĻžāύ āĻŦā§āϰ āĻāϰāĨ¤
āĻ
āϏāĻŽāϤāĻžāϰ āĻ
āύā§āϰā§āĻĒ āϏāĻŽā§āĻāϰāĻŖ,
\(\frac{x_{1}}{10}+\frac{x_{2}}{5}=1\)
\(\frac{x_{1}}{1}+\frac{x_{2}}{1}=1\)
\(x_{2}=4, x_{1}=0, x_{2}=0\)
\(Z_{A}=2(\min )\) Ans
\(Z_{B}=20\)
\(Z_{C}=32\)
\(Z_{D}=28\)
\(Z_{E}=7\)
āĻā§āĻŦāĻŦāĻŋāĻā§āĻāĻžāύ
- āĻĻā§āĻŦā§āϤ āĻĒā§āϰāĻā§āĻāύā§āύ āĻāĻĒāĻŋāϏā§āĻāĻžāϏāĻŋāϏ āĻāϰ āĻ
āύā§āĻĒāĻžāϤ āĻšāϞā§-
- 3 : 1
- 2 : 1
- 13 : 3
- 9 : 7
Ans. āϏāĻžāĻāĻāĻžāϏ
- āύāĻŋāĻā§āϰ āĻā§āύāĻāĻŋāϤ⧠āĻā§āϰāĻžāϞā§ā§āĻĄ āĻŽā§āϞ āĻĒāĻžāĻā§āĻž āϝāĻžā§?
- Pinus
- Cycas
- Hibiscus
- Ficus
Ans. ⧝:ā§
- āĻāϞāĻžāĻā§āĻŽāĻŋāϰ āĻāĻĻā§āĻāĻŋāĻĻ āĻā§āύāĻāĻŋ?
- Barringtonia acutangula
- Tectona grandis
- Shorea robusta
- Caissia fistula
Ans. Barringtonia acutangula
- āύāĻŋāĻā§āϰ āĻā§āύ āĻāύā§āĻāĻŋāĻŦāĻĄāĻŋ āĻŦā§āĻā§āϰ āĻĻā§āϧā§āϰ āĻŽāĻžāϧā§āϝāĻŽā§ āĻĒā§āϰāĻŦāĻžāĻšāĻŋāϤ āĻšāϝāĻŧ?
- IgA
- IgG
- IgM
- IgE
Ans. IgA
- āĻĒāϤāĻā§āĻā§āϰ āϏāĻŽā§āĻĒā§āϰā§āĻŖ āϰā§āĻĒāĻžāύā§āϤāϰ āύāĻŋāĻŽā§āύāϞāĻŋāĻāĻŋāϤ āĻā§āύ āϧāĻžāĻĒāĻā§āϞ⧠āύāĻŋāϝāĻŧā§ āĻāĻ āĻŋāϤ?
- āĻĄāĻŋāĻŽ-āύāĻŋāĻŽā§āĻĢ-āĻĒā§āϰā§āĻŖāĻžāĻā§āĻ-āĻĒāϤāĻā§āĻ
- āĻĄāĻŋāĻŽ-āϞāĻžāϰā§āĻāĻž-āĻĒāĻŋāĻāĻĒāĻž-āĻĒā§āϰā§āĻŖāĻžāĻā§āĻ-āĻĒāϤāĻā§āĻ
- āĻĄāĻŋāĻŽ-āϞāĻžāϰā§āĻāĻž-āĻĒā§āϰā§āĻŖāĻžāĻā§āĻ-āĻĒāϤāĻā§āĻ
- āĻĄāĻŋāĻŽ-āĻĒāĻŋāĻāĻĒāĻž-āϞāĻžāϰā§āĻāĻž-āĻĒā§āϰā§āĻŖāĻžāĻā§āĻ-āĻĒāϤāĻā§āĻ
Ans. āĻĒā§āϰā§āĻŖāĻžāĻā§āĻ āĻĒāϤāĻā§āĻ
- āĻŽāĻžāύāĻŦāĻĻā§āĻšā§ āϏā§āĻā§āĻŽ āĻā§āώ āĻā§āĻĨāĻžāϝāĻŧ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧ?
- āĻ āĻā§āύā§āϝāĻžāĻļāϝāĻŧā§
- āϝāĻā§āϤā§
- āĻ āϏā§āĻĨāĻŋāĻŽāĻā§āĻāĻžāϝāĻŧ
- āĻšā§ā§āĻĒāĻŋāύā§āĻĄā§
Ans. āĻ āϏā§āĻĨāĻŋāĻŽāĻā§āĻāĻžāϝāĻŧ
- āĻŽāĻžāύāĻŦāĻĻā§āĻšā§ āĻāĻāĻŋāĻĻā§āĻļā§āϝāĻŧ āĻ
āĻā§āĻāϞ⧠āĻāĻļā§āϰā§āĻāĻžāϰ āϏāĻāĻā§āϝāĻž?
- ā§Ē āĻāĻŋ
- ā§ āĻāĻŋ
- ⧧⧍ āĻāĻŋ
- ā§Ģ āĻāĻŋ
Ans. ā§ĢāĻāĻŋ
- āĻā§āϝāĻžāĻĒā§āĻāĻž āĻā§āĻŽāĻŋāϰ āĻŦā§āĻā§āĻāĻžāύāĻŋāĻ āύāĻžāĻŽ āĻāĻŋ?
- Faciola hepatica
- Loa loa
- Ascaris lumbricoides
- None of them
Ans. Faciola hepatica
- āĻŽā§āϝāĻžāύā§āĻāϞ āĻā§āύ āĻĒāϰā§āĻŦā§āϰ āĻŦā§āĻļāĻŋāώā§āĻ?
- Arthropoda
- Mollusca
- Annelida
- Echinodermata
Ans. Mollusca
- āĻā§āύ āĻŦā§āϝāĻžāĻā§āĻā§āϰāĻŋāϝāĻŧāĻžāϝāĻŧ āĻāĻāĻāĻŋ āĻŽāĻžāϤā§āϰ āĻĢā§āϞāĻžāĻā§āϞāĻž āĻĨāĻžāĻā§?
- Vibrio cholerae
- Spirillum minus
- Pseudomonas fluorescens
- Bacillus subtilise
Ans. Vibrio cholerae
- āĻāĻĻā§āĻāĻŋāĻĻā§āϰ āϰā§āĻŽ āĻ
āĻĨāĻŦāĻž āĻā§āϰāĻžāĻāĻā§āĻŽ āĻā§āύāĻāĻŋāϰ āĻ
āĻāĻļ?
- āĻ āϧāĻāϤā§āĻŦāĻ
- āĻāϰā§āĻā§āĻā§āϏ
- āϤā§āĻŦāĻ
- āĻ āύā§āϤāĻāϤā§āĻŦāĻ
Ans. āϤā§āĻŦāĻ
- āύāĻŋāĻā§āϰ āĻā§āύāĻāĻŋāϤ⧠āĻāĻāĻŋāύāĻŋāĻāĻŋ āĻāĻŦāĻ āĻšā§āĻāĻžāϰā§āϏāĻŋāϏā§āĻ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧ?
- Escherichia
- Nostoc
- Zygnema
- Chlorella
Ans. UGA
- āĻĒā§āϰā§āĻĢā§āĻ-ā§§ āĻāϰ āĻā§āύ āĻĒāϰā§āϝāĻžāϝāĻŧā§ āĻāĻžāϝāĻŧāĻžāĻāĻŽāĻž āϏā§āώā§āĻāĻŋ āĻšāϝāĻŧ?
- āϞā§āĻĒā§āĻā§āĻāĻŋāύ
- āĻāĻžāĻāĻā§āĻāĻŋāύ
- āĻĄāĻŋāĻĒā§āϞā§āĻāĻŋāύ
- āĻĒā§āϝāĻžāĻāĻžāĻāĻāĻŋāύ
Ans. āĻĒā§āϝāĻžāĻāĻžāĻāĻāĻŋāύ
- āĻŽāĻžāύāĻŦāĻĻā§āĻšā§ āϰāĻā§āϤā§āϰ āĻĒā§āϞāĻžāĻāĻŽāĻžāϰ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ pH āĻāϤ?
- 7.0
- 7.6
- 7.8
- 7.4
Ans. 7.4
- āĻā§āύ āĻā§āĻĄāύāĻāĻŋ āĻā§āύ⧠āĻ
ā§āϝāĻžāĻŽāĻžāĻāύ⧠āĻ
ā§āϝāĻžāϏāĻŋāĻĄ āύāĻŋāϰā§āĻĻā§āĻļ āĻāϰ⧠āύāĻž?
- CCU
- ACU
- UGA
- AAG
Ans. āĻĒā§āĻā§āĻā§āĻā§āϤ
āĻā§āĻŦāĻŦāĻŋāĻā§āĻāĻžāύ (Biology) āϞāĻŋāĻāĻŋāϤ āĻ āĻāĻļ
ā§§ā§ŠāĨ¤ DNA āĻĒā§āϰāϤāĻŋāϞāĻŋāĻĒāύ āĻŦāϞāϤ⧠āĻā§ āĻŦā§āĻ? DNA āĻĒā§āϰāϤāĻŋāϞāĻŋāĻĒāύā§āϰ āĻāύā§āϝ āĻĒā§āϰā§ā§āĻāύā§āϝāĻŧ āĻāĻžāϰāĻāĻŋ āĻāĻĒāĻāϰāĻŖā§āϰ āύāĻžāĻŽ āϞāĻŋāĻāĨ¤
āĻā§āϰāĻžāύā§āϏāĻā§āϰāĻŋāĻĒāĻļāύ: RNA āĻĒāϞāĻŋāĻŽāĻžāϰā§āĻ āĻāύāĻāĻžāĻāĻŽ āĻĻā§āĻŦāĻžāϰāĻž DNA āĻŦā§āϏ āϏāĻŋāĻā§āϝāĻŧā§āύā§āϏ āĻāĻĒāĻŋ āĻāϰ⧠mRNA āϏāĻāĻļā§āϞā§āώāĻŖ āĻĒā§āϰāĻā§āϰāĻŋāϝāĻŧāĻž āĻšāϞāĻžā§ āĻā§āϰāĻžāύā§āϏāĻā§āϰāĻŋāĻĒāĻļāύāĨ¤
āĻā§āϰāĻžāύā§āϏāĻā§āϰāĻŋāĻĒāĻļāύ āĻĒā§āϰāĻā§āϰāĻŋāϝāĻŧāĻžāϰ āĻāύā§āϝ āϝāĻž āĻĒā§āϰāϝāĻŧāĻžā§āĻāύ-
- DNA āĻāĻžāĻāĻ (template)
- RNA-āĻĒāϞāĻŋāĻŽāĻžāϰā§āĻ āĻāύāĻāĻžāĻāĻŽ āϝāĻž āϤāĻŋāύ āĻĒā§āϰāĻāĻžāϰ āĻšāϤ⧠āĻĒāĻžāϰā§āĨ¤
- āĻŽā§āĻā§āϤ āϰāĻžāĻāĻŦāĻžā§āύāĻŋāĻāĻā§āϞāĻŋāϝāĻŧāĻžā§āĻāĻžāĻāĻĄ āĻā§āϰāĻžāĻāĻĢāϏāĻĢā§āĻ (ATP, GTP, CTP āĻāĻŦāĻ UTP)
- āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ āĻļāĻā§āϤāĻŋ, āĻā§āϰāĻžāĻāĻĢāϏāĻĢā§āĻ āĻā§āĻā§āĻā§ āύāĻŋāĻāĻā§āϞāĻŋāϝāĻŧāĻžā§āĻāĻžāĻāĻĄ āĻāĻŦāĻ āĻĒāĻžāĻāϰāĻžā§āĻĢāϏāĻĢā§āĻ āϏā§āώā§āĻāĻŋāĻāĻžāϞ⧠āĻŽā§āĻā§āϤ āĻšāϝāĻŧāĨ¤
āĻĒāĻžāĻāϰāĻžā§āĻĢāϏāĻĢā§āĻ āĻā§āĻā§āĻā§ āĻĻā§āĻ āĻāϝāĻŧāύ āĻĢāϏāĻĢā§āĻ āϤā§āϰāĻŋ āĻāĻžāϞā§āĻ āĻāĻŋāĻā§ āĻ āϤāĻŋāϰāĻŋāĻā§āϤ āĻļāĻā§āϤāĻŋ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧāĨ¤ - āĻāĻŋāĻā§ āϏāĻšāϝāĻžā§āĻā§ āĻĒā§āϰāĻžā§āĻāĻŋāύāĨ¤
ā§§ā§ĒāĨ¤ āĻāĻāĻŦā§āĻāĻĒāϤā§āϰ⧠āĻāĻĻā§āĻāĻŋāĻĻā§āϰ āĻāĻžāĻŖā§āĻĄā§āϰ āĻ āύā§āϤāϰā§āĻāĻ āύā§āϰ āĻĒāĻžāĻāĻāĻāĻŋ āĻļāύāĻžāĻā§āϤāĻāĻžāϰ⧠āĻŦā§āĻļāĻŋāώā§āĻā§āϝ āϞāĻŋāĻāĨ¤
āĻāĻāĻŦā§āĻāĻĒāϤā§āϰ⧠āĻāĻĻā§āĻāĻŋāĻĻā§āϰ āĻāĻžāĻŖā§āĻĄā§āϰ āĻ āύā§āϤāϰā§āĻāĻ āύā§āϰ āĻļāύāĻžāĻā§āϤāĻāĻžāϰ⧠āĻŦā§āĻļāĻŋāώā§āĻā§āϝ:
- āϏāĻžāϧāĻžāϰāĻŖāϤ āĻāĻžāύā§āĻĄāϰāĻžā§āĻŽ āĻ āύā§āĻĒāϏā§āĻĨāĻŋāϤāĨ¤
- āĻŦāĻšāĻŋāĻāϤā§āĻŦāĻā§ āĻāĻŋāĻāĻāĻŋāĻāϞ āĻāĻĒāϏā§āĻĨāĻŋāϤāĨ¤
- āĻ āϧāĻāϤā§āĻŦāĻ āĻāĻā§ āĻāĻŦāĻ āϏāĻžāϧāĻžāϰāĻŖāϤ āĻĢā§āϞā§āϰā§āύāĻāĻžāĻāĻŽāĻž āĻāĻŋāϏā§āϝ⧠āĻĻāĻŋāϝāĻŧā§ āĻāĻ āĻŋāϤāĨ¤
- āĻāĻžāϏā§āĻā§āϞāĻžāϰ āĻŦāĻžāύā§āĻĄāϞāĻā§āϞāĻžā§ āĻā§āϰāĻžāĻāύā§āĻĄ āĻāĻŋāϏā§āϝā§āϤ⧠āĻŦāĻŋāĻā§āώāĻŋāĻĒā§āϤāĻāĻžāĻŦā§ āĻāĻĄāĻŧāĻžāύāĻžā§āĨ¤
- āĻŽā§āĻāĻžāĻāĻžāĻāϞā§āĻŽ āĻĒāϰāĻŋāϧāĻŋāϰ āĻĻāĻŋāĻā§ āĻāĻŦāĻ āĻĒā§āϰāĻžā§āĻā§āĻāĻžāĻāϞā§āĻŽ āĻā§āύā§āĻĻā§āϰā§āϰ āĻĻāĻŋāĻā§ āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
- āĻāĻžāĻāϞā§āĻŽ Y āĻŦāĻž V āĻāĻā§āϤāĻŋāĻŦāĻŋāĻļāĻŋāώā§āĻāĨ¤
- āĻāĻžāϏā§āĻā§āϞāĻžāϰ āĻŦāĻžāύā§āĻĄāϞ āϏāĻāϝā§āĻā§āϤ, āϏāĻŽāĻĒāĻžāϰā§āĻļā§āĻŦā§āϝāĻŧ āĻ āĻŦāĻĻā§āϧ (āĻāĻžāĻāϞā§āĻŽ āĻ āĻĢā§āϞā§āϝāĻŧā§āĻŽā§āϰ āĻŽāĻžāĻā§ āĻā§āϝāĻžāĻŽā§āĻŦāĻŋāϝāĻŧāĻžāĻŽ āύā§āĻ)āĨ¤
ā§§ā§Ģ⧎ Platyhelminthes āĻāĻŦāĻ Nemathelminthes āĻāϰ āĻĒāĻžāĻāĻāĻāĻŋ āĻĒā§āϰāϧāĻžāύ āĻĒāĻžāϰā§āĻĨāĻā§āϝ āϞāĻŋāĻāĨ¤
Platyhelminthes āĻāĻŦāĻ Nemathelminthes āĻāϰ āĻĒāĻžāĻāĻāĻāĻŋ āĻĒā§āϰāϧāĻžāύ āĻĒāĻžāϰā§āĻĨāĻā§āϝ:
āĻŦāĻŋāώ⧠| Platyhelminthes | Nemathelminthes |
āϏāĻžāϧāĻžāϰāĻŖ āύāĻžāĻŽ | āĻā§āϝāĻžāĻĒā§āĻāĻž āĻā§āĻŽāĻŋ | āϏā§āϤāĻžāĻā§āĻŽāĻŋ āĻŦāĻž āĻāĻžā§āϞāĻā§āĻŽāĻŋ |
āϏāĻāĻāĻ āύ āĻŽāĻžāϤā§āϰāĻž | āĻāĻŋāϏā§āϝā§-āĻ āĻā§āĻ āĻŽāĻžāϤā§āϰāĻž | āĻ āĻā§āĻāϤāύā§āϤā§āϰ āĻŽāĻžāϤā§āϰāĻž |
āϏāĻŋāϞāĻžā§āĻŽ | āĻ ā§āϝāĻžāϏāĻŋāϞāĻžā§āĻŽā§āĻ | āϏā§āĻĄāĻžā§āϏāĻŋāϞāĻžā§āĻŽā§āĻ |
āϝā§āύ āĻĻā§āĻŦāĻŋāϰā§āĻĒāϤāĻžāĨ¤ | āĻ āύā§āĻĒāϏā§āĻĨāĻŋāϤ | āĻāĻĒāϏā§āĻĨāĻŋāϤ |
āĻļāĻŋāĻāĻž āĻā§āώ | āĻāĻĒāϏā§āĻĨāĻŋāϤ | āĻ āύā§āĻĒāϏā§āĻĨāĻŋāϤ |
āĻā§āώāĻ | āĻāĻĒāϏā§āĻĨāĻŋāϤ | āĻ āύā§āĻĒāϏā§āĻĨāĻŋāϤ |
ā§§ā§ŦāĨ¤ āĻŽāĻžāύāĻŦāĻĻā§āĻšā§āϰ āϝ⧠āĻā§āύ⧠⧧ā§ĻāĻāĻŋ āĻāϰā§āĻāĻŋāĻāĻž āϏā§āύāĻžāϝāĻŧā§āϰ āύāĻžāĻŽ āϞāĻŋāĻāĨ¤
ā§§ā§ĻāĻāĻŋ āĻāϰāĻžā§āĻāĻŋāĻ āϏā§āύāĻžāϝāĻŧā§āϰ āύāĻžāĻŽ:
- āĻ āϞāĻĢā§āϝāĻžāĻā§āĻāϰāĻŋ āĻŦāĻž āĻā§āϰāĻžāĻŖ āĻā§āϰāĻšāĻŖāĻāĻžāϰ⧠āϏā§āύāĻžāϝāĻŧā§āĨ¤
- āĻ āĻĒāĻāĻŋāĻ āĻŦāĻž āĻĻāϰā§āĻļāύ āϏā§āύāĻžāϝāĻŧā§āĨ¤
- āĻ āĻā§āϞāĻžā§āĻŽāĻžā§āĻāϰ
- āĻā§āϰāϞāĻŋāϝāĻŧāĻžāϰ āĻŦāĻž āĻĒā§āϝāĻžāĻĨā§āĻāĻŋāĻ āϏā§āύāĻžāϝāĻŧā§āĨ¤
- āĻā§āϰāĻžāĻāĻā§āĻŽāĻŋāύāĻžāϞ
- āĻ ā§āϝāĻžāĻŦāĻĄāĻŧā§āϏā§āύā§āϏāĨ¤
- āĻĢā§āϝāĻžāϏāĻŋāϝāĻŧāĻžāϞāĨ¤
- āĻ āĻĄāĻŋāĻāϰāĻŋ āĻŦāĻž āĻā§āϏā§āĻāĻŋāĻŦā§āϞāĻžā§ āĻāĻāϞāĻŋāϝāĻŧāĻžāϰ āϏā§āύāĻžāϝāĻŧā§āĨ¤ |
- āĻā§āϞāϏāĻžā§āĻĢā§āϝāĻžāϰāĻŋāĻā§āĻāĻŋāϝāĻŧāĻžāϞ
- āĻā§āĻāĻžāϏ āĻŦāĻž āύāĻŋāĻāĻŽāĻžā§āĻā§āϝāĻžāϏā§āĻā§āϰāĻŋāĻ āĻŦāĻž āĻā§āώā§āϧāĻžāϰā§āϤ āϏā§āύāĻžāϝāĻŧā§āĨ¤ |
- āĻ ā§āϝāĻžāĻā§āϏā§āϏāϰāĻŋāĨ¤
- āĻšāĻžāĻāĻĒāĻžā§āĻā§āϞā§āϏāĻžāϞ
āĻŦāĻžāĻāϞāĻž
-
âāĻāĻŋāϤā§āϰāĻŽāϝāĻŧ āĻŦāϰā§āĻŖāύāĻžāϰ āĻŦāĻžāĻŖā§â- āĻāĻŦāĻŋ āĻā§āĻĨāĻž āĻĨā§āĻā§ āĻā§āĻĄāĻŧāĻŋāϝāĻŧā§ āĻāύā§āύ?
- āĻĒā§āϰāĻā§āϤāĻŋāϰ āĻāĻāϤāĻžāύ āϏā§āϰā§āϤ āĻĨā§āĻā§
- āĻā§āϰāĻŽāύ āĻŦā§āϤā§āϤāĻžāύā§āϤ āĻĨā§āĻā§
- āĻŽāĻžāύāώā§āϰ āĻā§āϰā§āϤāĻŋ āĻĨā§āĻā§
- āĻāĻŦāĻŋāϤāĻž āĻĨā§āĻā§
Ans. āĻā§āϰāĻŽāύ āĻŦā§āϤā§āϤāĻžāύā§āϤ āĻĨā§āĻā§
- āϏāĻžāϞāĻžāĻŽā§āϰ āĻšāĻžāϤ āĻĨā§āĻā§ āĻāĻŋāϏā§āϰ āĻŽāϤ⧠āĻ
āĻŦāĻŋāύāĻžāĻļā§ āĻŦāϰā§āĻŖāĻŽāĻžāϞāĻž āĻāϰā§?
- āĻā§āώā§āĻāĻā§ā§āĻžāϰ āĻŽāϤ
- āϰāĻā§āϤā§āϰ āĻŦā§āĻĻāĻŦā§āĻĻā§āϰ āĻŽāϤ
- āĻŦāĻŋāĻĒā§āϞāĻŦā§āϰ āĻŽāϤ
- āύāĻā§āώāϤā§āϰā§āϰ āĻŽāϤ
Ans. āύāĻā§āώāϤā§āϰā§āϰ āĻŽāϤ
- āϏā§āĻĨāĻŋāϰ āĻļāĻŦā§āĻĻā§āϰ āĻŦāĻŋāĻĒāϰā§āϤ āĻļāĻŦā§āĻĻ āĻšāϞā§-
- āĻāĻā§āĻāĻŽ
- āĻā§āϞāĻžāĻšāϞ
- āĻāĻā§āĻāϰāĻŦ
- āύāĻŋāĻļā§āĻāϞ
Ans. āĻāĻā§āĻāĻŽ
-
āĻŦā§āĻāĻŽ āϰā§āĻā§āϝāĻŧāĻž āϏāĻžāĻāĻžāĻāϝāĻŧāĻžāϤ āĻšā§āϏā§āύ āϏāĻā§āϝāϤāĻžāϰ āϏāĻā§āĻā§ āĻĻāĻžāϰāĻŋāĻĻā§āϰā§āϝ āĻŦā§āĻĻā§āϧāĻŋāϰ āĻā§ āĻāĻžāϰāĻŖ āύāĻŋāϰā§āĻĻā§āĻļ āĻāϰā§āĻā§āύ?
- āĻ āϞāϏāϤāĻž
- āĻŦāĻŋāϞāĻžāϏāĻŋāϤāĻž
- āĻ āϏāϤāϤāĻž
- āĻ āĻā§āĻāϤāĻž
Ans. āĻŦāĻŋāϞāĻžāϏāĻŋāϤāĻž
- āĻāĻžāĻā§ āύāĻāϰā§āϞ āĻāϏāϞāĻžāĻŽā§āϰ āĻŽāϤā§, āĻāĻŋāϏā§āϰ āĻŽāϧā§āϝ āĻĻāĻŋāϝāĻŧā§ āϏāϤā§āϝāĻā§ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧ?
- āĻŽāύā§āώā§āϝāϤā§āĻŦ
- āϧāϰā§āĻŽ
- āϏāĻāĻā§āϰāĻžāĻŽ
- āĻā§āϞ
Ans. āĻā§āϞ
- āĻŦā§āĻā§āώ āĻā§āĻŦāϞ āĻŦā§āĻĻā§āϧāĻŋāϰ āĻāĻļāĻžāϰāĻž āύāϝāĻŧ, āĻŽāĻžā§āϤāĻžāĻšā§āϰ āĻšā§āϏā§āύ āĻā§āϧā§āϰ⧠āĻŦāϞā§āĻā§āύ, āϤāĻž āĻāϰ⧠āĻāĻŋāĻā§āϰ āĻāĻā§āĻāĻŋāϤ; āϏā§āĻāĻŋ āĻā§?
- āĻŦāĻŋāĻŦā§āĻāύāĻžāĻŦā§āϧ
- āĻĒā§āϰāĻļāĻžāύā§āϤāĻŋ
- āϧā§āϰā§āϝāĻļā§āϞāϤāĻž
- āĻĻ
āĻāϤāĻŋāĻŽāϝāĻŧāϤāĻž
Ans. āĻĒā§āϰāĻļāĻžāύā§āϤāĻŋ
- āĻā§āύāĻāĻŋ āĻĒāϰā§āϤā§āĻāĻŋāĻ āĻļāĻŦā§āĻĻ āύāϝāĻŧ?
- āĻāϞāĻĒāĻŋāύ
- āĻāϞāĻŦā§āĻžāϞāĻž
- āĻāϞāĻŽāĻžāϰāĻŋ
- āĻāύāĻžāϰāϏ
Ans. āĻāϞāĻŦā§āĻžāϞāĻž
- āĻŦāĻŋāĻāĻžāϰ āĻāϰ⧠āĻāĻžāĻ āĻāϰ⧠āύāĻž āϝā§, āϤāĻžāĻā§ āĻāĻāĻāĻĨāĻžāϝāĻŧ āĻŦāϞā§-
- āĻ āύā§āĻĻāĻžāϰ
- āĻ āĻļāĻŋāĻā§āώāĻŋāϤāĻĒāĻā§
- āĻ āĻŦāĻŋāĻŽā§āώā§āϝāĻāĻžāϰā§
- āĻ āĻā§āϤā§āĻāϝāĻŧ
Ans. āĻ āĻŦāĻŋāĻŽā§āώā§āϝāĻāĻžāϰā§
- āύāĻŋāĻā§āϰ āĻā§āύāĻāĻŋ āĻāϤā§āϤāĻŽ āĻĒā§āϰā§āώā§āϰ āĻā§āϰāĻŋāϝāĻŧāĻžāĻĒāĻĻā§āϰ āĻāĻĻāĻžāĻšāϰāĻŖ?
- āĻāϰā§āĻ
- āĻāϰā§āĻāĻŋ
- āĻāϰā§āĻāĻŋāϏ
- āĻāϰā§āĻā§āύ
Ans. āĻāϰā§āĻāĻŋ
- āĻŖ-āϤā§āĻŦ āĻŦāĻŋāϧāĻžāύ āĻ
āύā§āϏāĻžāϰ⧠āĻā§āϞ āĻŦāĻžāύāĻžāύ āĻāĻā§ āĻā§āύ āĻā§āĻā§āĻā§?
- āϧāϰāύ, āĻĒā§āϰāĻžāύā§
- āύā§āϤā§āϰāĻā§āύāĻž, āĻā§āĻšāĻā§āĻŖ
- āĻā§āώāĻŖāĻāĻžāϞ, āĻŦāϰā§āώāĻŖ
- āĻŽā§āϞā§āϝāĻžāϝāĻŧāĻŖ, āύāĻŋāϰā§āĻĒāύ
Ans. āĻŽā§āϞā§āϝāĻžāϝāĻŧāĻŖ, āύāĻŋāϰā§āĻĒāύ
- āĻā§āύāĻāĻŋ āĻ
āĻĒāĻĒā§āϰā§ā§āĻ?
- āĻāĻāϤā§āϰ
- āĻāĻāϤā§āϰāĻŋāϤ
- āĻāĻāϤāĻžāϞ
- āĻāĻāϤāĻž
Ans. āĻāĻāϤā§āϰāĻŋāϤ
- âāĻāĻŦāĻžāϰā§āϰ āϏāĻāĻā§āϰāĻžāĻŽ āϏā§āĻŦāĻžāϧā§āύāϤāĻžāϰ āϏāĻāĻā§āϰāĻžāĻŽâ-āĻāĻāĻžāύ⧠āĻāĻžāϰāĻ-āĻŦāĻŋāĻāĻā§āϤāĻŋ āĻŦāĻŋāĻāĻžāϰ⧠āϏā§āĻŦāĻžāϧā§āύāϤāĻžāϰâ āĻšāϞā§-
- āύāĻŋāĻŽāĻŋāϤā§āϤāĻžāϰā§āĻĨā§ ā§Ŧāώā§āĻ ā§
- āĻ āĻĒāĻžāĻĻāĻžāύ⧠ā§āĻŽā§
- āύāĻŋāĻŽāĻŋāϤā§āϤāĻžāϰā§āĻĨā§ ā§āĻŽā§
- āĻāϰā§āĻŽā§ ā§Ŧāώā§āĻ ā§
Ans. āύāĻŋāĻŽāĻŋāϤā§āϤāĻžāϰā§āĻĨā§ ā§Ŧāώā§āĻ ā§
- ‘āĻ
āύāĻžāĻŦā§āώā§āĻāĻŋāϰ āĻĻāĻŋāύ⧠āĻĢā§āϞā§āϰ āĻā§ā§āĻŋāϰ āĻŽāϤ⧠āĻŽā§āϝāĻŧā§āϰ āĻŦāĻŋāĻŽāϰā§āώ āĻŽā§āĻ’āĨ¤ āĻā§āύ āϰāĻāύāĻžāϰ āĻŦāĻžāĻā§āϝ?
- āϰā§āĻāύ āĻā§āĻ
- āĻŽāĻšāĻžāĻāĻžāĻāϤāĻŋāĻ āĻāĻŋāĻāϰā§āĻāϰ
- āĻāĻžāώāĻžāϰ āĻĻā§āĻā§āώā§
- āĻ āĻĒāϰāĻŋāĻāĻŋāϤāĻž
Ans. āĻ āĻĒāϰāĻŋāĻāĻŋāϤāĻž
-
āύāĻŋāĻā§āϰ āĻā§āύ āĻāĻŦāĻŋāϤāĻžāϝāĻŧ āĻā§āϰāϝāĻŧ āύāĻāϰā§āϰ āĻĒā§āϰāϏāĻā§āĻ āĻāĻā§?
- āϏāĻžāĻŽā§āϝāĻŦāĻžāĻĻā§
- āϏā§āĻ āĻ āϏā§āϤā§āϰ
- āĻāĻāϤāĻžāύ
- āĻŦāĻŋāĻā§āώāĻŖā§āϰ āĻĒā§āϰāϤāĻŋ āĻŽā§āĻāύāĻžāĻĻ
Ans. āϏā§āĻ āĻ āϏā§āϤā§āϰ
- âāϏāĻžāĻŽā§āϝāĻŦāĻžāĻĻā§â āĻāĻŦāĻŋāϤāĻžāϝāĻŧ āĻāϞā§āϞā§āĻāĻā§āϤ âāĻā§āύā§āĻĻāĻžāĻŦā§āϏā§āϤāĻžâ āĻā§?
- āĻāĻāĻĒā§āϰāĻāĻžāϰā§āϰ āĻāĻžāĻĻā§āϝ
- āϧāϰā§āĻŽ āĻŦāĻŋāĻļā§āώ
- āĻĒāĻžāϰāϏā§āϝā§āϰ āĻ āĻā§āύāĻŋ āĻāĻĒāĻžāϏāĻāĻĻā§āϰ āϧāϰā§āĻŽāĻā§āϰāύā§āĻĨ āĻ āĻāĻžāώāĻž
- āĻāĻĄāĻŧāĻŋāώā§āϝāĻžāϰ āĻāĻāĻāĻŋ āϏā§āĻĨāĻžāύ
Ans. āĻĒāĻžāϰāϏā§āϝā§āϰ āĻ āĻā§āύāĻŋ āĻāĻĒāĻžāϏāĻāĻĻā§āϰ āϧāϰā§āĻŽāĻā§āϰāύā§āĻĨ āĻ āĻāĻžāώāĻž
āĻŦāĻžāĻāϞāĻž āϞāĻŋāĻāĻŋāϤ āĻ āĻāĻļ
ā§§ā§āĨ¤ āϏāĻžāϰāĻŽāϰā§āĻŽ āϞā§āĻ (āĻ
āύāϧāĻŋāĻ āĻāĻžāϰ āĻŦāĻžāĻā§āϝā§):
āϤāĻžāĻ āĻāĻŽāĻŋ āĻŽā§āύ⧠āύāĻŋāĻ āϏ⧠āύāĻŋāύā§āĻĻāĻžāϰ āĻāĻĨāĻž
āĻāĻŽāĻžāϰ āϏā§āϰā§āϰ āĻ
āĻĒā§āϰā§āĻŖāϤāĻžāĨ¤
āĻāĻŽāĻžāϰ āĻāĻŦāĻŋāϤāĻž, āĻāĻžāύāĻŋ āĻāĻŽāĻŋ
āĻā§āϞā§āĻ āĻŦāĻŋāĻāĻŋāϤā§āϰ āĻĒāĻĨā§ āĻšāϝāĻŧ āύāĻžāĻ āϏ⧠āϏāϰā§āĻŦāϤā§āϰāĻāĻžāĻŽā§āĨ¤
āĻā§āώāĻžāĻŖā§āϰ āĻā§āĻŦāύā§āϰ āĻļāϰāĻŋāĻ āϝ⧠āĻāύ,
āĻāϰā§āĻŽā§ āĻ āĻāĻĨāĻžāϝāĻŧ āϏāϤā§āϝ āĻāϤā§āĻŽā§āϝāĻŧāϤāĻž āĻāϰā§āĻā§ āĻ
āϰā§āĻāύ,
āϝ⧠āĻāĻā§ āĻŽāĻžāĻāĻŋāϰ āĻāĻžāĻāĻžāĻāĻžāĻāĻŋ,
āϏ⧠āĻāĻŦāĻŋāϰ āĻŦāĻžāĻŖā§-āϞāĻžāĻāĻŋ āĻāĻžāύ āĻĒā§āϤ⧠āĻāĻāĻŋāĨ¤
ā§§ā§ŽāĨ¤ āĻāĻžāĻŦ āϏāĻŽā§āĻĒā§āϰāϏāĻžāϰāĻŖ āĻāϰ (āĻ
āύāϧāĻŋāĻ āĻĒāĻžāĻāĻāĻāĻŋ āĻŦāĻžāĻā§āϝā§):
āĻ āĻŦāϝāĻŧāϏ⧠āϤāĻžāĻ āύā§āĻ āĻā§āύ⧠āϏāĻāĻļāϝāĻŧ
āĻ āĻĻā§āĻļā§āϰ āĻŦā§āĻā§ āĻāĻ āĻžāϰ⧠āĻāϏā§āĻ āύā§āĻŽā§āĨ¤
⧧⧝āĨ¤ âāϏā§āĻŦāĻžāϧā§āύāϤāĻžāϰ āϏā§āĻŦāϰā§āĻŖ āĻāϝāĻŧāύā§āϤā§â āύāĻŋāϝāĻŧā§ āĻĒāĻžāĻāĻāĻāĻŋ āĻŦāĻžāĻā§āϝ āϞā§āĻāĨ¤
⧍ā§ĻāĨ¤ âāύāĻĻā§â āĻļāĻŦā§āĻĻā§āϰ āĻĒāĻžāĻāĻāĻāĻŋ āϏāĻŽāĻžāϰā§āĻĨ āĻļāĻŦā§āĻĻ āϞā§āĻāĨ¤
āĻāĻāϰā§āĻāĻŋ
Fill in the blank with the most appropriate option. (Questions 1-8)
- âĻâĻâĻâĻâĻ. his alert and vigilant presence, all predatory animals were said to have been kept within bounds.
- Hence
- However
- in addition to
- Because of
Ans. Because of
- Complete the following sentence using the most suitable options given below: “If had a car, … … …”
- I took you to a long drive
- I would have taken you to a long drive
- I would have been taken you to a long drive
- I would take you to a long drive
Ans. I would take you to a long drive
- Complete the sentence with the most appropriate option below. âThe organization helps âĻâĻâĻâĻ. elderly.â
- the
- an
- a
- no article
Ans. the
- Do you get âĻâĻâĻ. well âĻâĻâĻ your sister?
- by, to
- on, with
- into, with
- in, to
Ans. on, with
- Do not make so much noise. Shibli âĻâĻâĻ.. to study for his admission test
- try
- tries
- tried
- is trying
Ans. is trying
- Would you mind âĻâĻâĻâĻâĻ a cup of coffee with me?
- drink
- having to drink
- having
- to drink
Ans. having
- Bangladesh is âĻâĻâĻâĻ.. huge inland open water resources.
- equipped with
- submerged by
- blessed by
- blessed with
Ans. blessed with
-
By this time next year, I âĻâĻ. all my exams.
- will taken
- have taken
- will have taken
- took
Ans. will have taken
- The synonym of âincompatibleâ is-
- disqualified
- incomprehensible
- unsuitable
- incompetent
Ans. unsuitable
- If you are skeptical you are â
- credulous
- villainous
- philosophical
- doubtful
Ans. doubtful
- Change the voice of this sentence: âHe does not like people laughing at himâ.
- People laughing at him are not liked by him
- He does not like being laughed at.
- To be laughed at by people are not like by him
- He does not like him being laughed at by people.
Ans. People laughing at him are not liked by him
- The noun of âboreâ is â
- boring
- bores
- bored
- boredom
Ans. boredom
- Whose book is that?
- Itâs of Mitaâs.
- Itâs Mitasâ
- Itâs Mitaâs
- Its Mitaâs
Ans. Itâs Mitaâs
- The antonym of âmalignâ is-
- hostile
- bad
- benign
- harmful
Ans. benign
- Choose the correctly spelled word.
- Synonymus
- Hippopotamous
- Hypocrisy
- Antonymus
Ans. Hypocrisy
English Written Part
⧍⧧āĨ¤ Write a short paragraph of 10 sentences on ‘The Dying Buriganga River’
⧍⧍āĨ¤ What is personification? Give an example of personification.
ā§¨ā§ŠāĨ¤
“I love to rise in a summer morn,
When the birds sing on every tree;
The distant huntsman winds his horn,
O what sweet company!”
Which poem are these lines taken from? Who wrote this poem? What is the tone of the poem?
⧍ā§ĒāĨ¤ Write 10 sentences on how to minimize the chances of getting infected by the Corona Virus.