DU A Unit Admission Question Solution 2020-2021
āĻ¨āĻŋāĻā§āĻ° āĻāĻŋāĻĄāĻŋāĻāĻ¤ā§ āĻĻā§āĻā§ āĻ¨āĻžāĻ āĻŦāĻŋāĻ¸ā§āĻ¤āĻžāĻ°āĻŋāĻ¤:
āĻā§āĻ°ā§āĻ¸āĻāĻŋ āĻāĻŋāĻ¨āĻ¤ā§ āĻĒāĻžāĻļā§āĻ° āĻŦāĻžāĻāĻ¨āĻāĻŋ āĻā§āĻ˛āĻŋāĻ āĻāĻ°:Â Â
āĻā§āĻ°ā§āĻ¸ā§āĻ° āĻĄā§āĻŽā§ āĻāĻŋāĻĄāĻŋāĻ(āĻāĻāĻžāĻŦā§ āĻĒāĻĻāĻžāĻ°ā§āĻĨāĻŦāĻŋāĻā§āĻāĻžāĻ¨+āĻ°āĻ¸āĻžā§āĻ¨+āĻāĻā§āĻāĻ¤āĻ°āĻāĻŖāĻŋāĻ¤ āĻāĻ° āĻŦāĻŋāĻāĻ¤ āĻŦāĻŋāĻļ āĻŦāĻāĻ°ā§āĻ° āĻ¸āĻāĻ˛ āĻĒā§āĻ°āĻļā§āĻ¨ā§āĻ° āĻ¸āĻŽāĻžāĻ§āĻžāĻ¨ āĻĨāĻžāĻāĻŦā§ āĻāĻŋāĻĄāĻŋāĻāĻ¤ā§)
āĻĒāĻĻāĻžāĻ°ā§āĻĨāĻŦāĻŋāĻā§āĻāĻžāĻ¨
-
āĻāĻāĻāĻŋ āĻ¸āĻŽāĻžāĻ¨ā§āĻ¤āĻ°āĻžāĻ˛ āĻĒāĻžāĻ¤ āĻ§āĻžāĻ°āĻāĻā§ āĻāĻžāĻ°ā§āĻāĻŋāĻ¤ āĻāĻ°āĻžāĻ° āĻĒāĻ° āĻŦā§āĻ¯āĻžāĻāĻžāĻ°āĻŋ āĻā§āĻ˛ā§ āĻĢā§āĻ˛āĻž āĻšāĻ˛ā§āĨ¤ āĻ āĻ
āĻŦāĻ¸ā§āĻĨāĻžāĻ¯āĻŧ āĻ§āĻžāĻ°āĻāĻāĻŋāĻ¤ā§ āĻ¸āĻā§āĻāĻŋāĻ¤ āĻļāĻā§āĻ¤āĻŋāĻ° āĻĒāĻ°āĻŋāĻŽāĻžāĻŖ \(U_{0}\)āĨ¤ āĻĒāĻžāĻ¤ āĻĻā§āĻāĻŋāĻ° āĻĻā§āĻ°āĻ¤ā§āĻŦ āĻ¯āĻĻāĻŋ āĻĻā§āĻŦāĻŋāĻā§āĻŖ āĻāĻ°āĻž āĻšāĻ¯āĻŧ, āĻ¤āĻŦā§ āĻ§āĻžāĻ°āĻā§ āĻ¸āĻā§āĻāĻŋāĻ¤ āĻļāĻā§āĻ¤āĻŋ āĻāĻ¤āĻā§āĻ¨ āĻšāĻŦā§?
- \(\frac{U_{0}}{2}\)
- \(\frac{U_{0}}{4}\)
- \(2 U_{0}\)
- \(4 U_{0}\)
Ans. \(2 U_{0}\)
- q āĻāĻ§āĻžāĻ¨ āĻŦāĻŋāĻļāĻŋāĻˇā§āĻ āĻāĻāĻāĻŋ āĻāĻžā§āĻ˛āĻāĻā§ āĻāĻāĻāĻŋ āĻ
āĻĒāĻ°āĻŋāĻŦāĻžāĻšā§ āĻ¸ā§āĻ¤āĻžāĻ° āĻāĻāĻĒā§āĻ°āĻžāĻ¨ā§āĻ¤ āĻŦā§āĻāĻ§ā§ \(\omega\) āĻā§āĻŖāĻŋāĻ āĻŦā§āĻā§ āĻāĻžā§āĻ°āĻžāĻ¨ā§
āĻšāĻā§āĻā§āĨ¤ āĻā§āĻ°ā§āĻŖāĻžāĻ¯āĻŧāĻŽāĻžāĻ¨ āĻāĻ§āĻžāĻ¨āĻāĻŋ āĻā§ āĻĒāĻ°āĻŋāĻŽāĻžāĻŖ āĻŦāĻŋāĻĻā§āĻ¯ā§ā§ āĻā§āĻĒāĻ¨ā§āĻ¨ āĻāĻ°āĻŦā§?- \(\omega q\)
- \(2 \pi \omega q\)
- \(\frac{q}{\omega}\)
- \(\frac{q \omega}{2 \pi}\)
Ans. \(\frac{q \omega}{2 \pi}\)
-
āĻ¸ā§āĻĨāĻŋāĻ¤āĻŋāĻ¸ā§āĻĨāĻžāĻĒāĻ āĻā§āĻŖāĻžāĻāĻā§āĻ° āĻŽāĻžāĻ¤ā§āĻ°āĻž āĻā§?
- \(\mathrm{MLT}^{-1}\)
- \(\mathrm{ML}^{-1} \mathrm{~T}^{-2}\)
- \(\mathrm{MLT}^{-2}\)
- \(\mathrm{ML}^{2} \mathrm{~T}^{-2}\)
Ans. \(\mathrm{ML}^{-1} \mathrm{~T}^{-2}\)
- āĻā§āĻ¨ āĻ¤ā§āĻ°ā§āĻāĻŋ āĻĻā§āĻ°ā§āĻāĻ°āĻŖā§ āĻāĻ¤ā§āĻ¤āĻ˛ āĻ˛ā§āĻ¨ā§āĻ¸ āĻŦā§āĻ¯āĻŦāĻšāĻžāĻ° āĻāĻ°āĻž āĻšāĻ¯āĻŧ?
- āĻā§āĻˇā§āĻŖ āĻĻā§āĻˇā§āĻāĻŋ
- āĻĻā§āĻ° āĻĻā§āĻˇā§āĻāĻŋ
- āĻāĻžāĻ˛āĻļā§
- āĻŦāĻŋāĻˇāĻŽ āĻĻā§āĻˇā§āĻāĻŋ
Ans. āĻĻā§āĻ° āĻĻā§āĻˇā§āĻāĻŋ
- \({ }_{13}^{27} \mathrm{Al}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{14}^{30} \mathrm{Si}+()\) āĻ¨āĻŋāĻāĻā§āĻ˛ā§ā§ āĻŦāĻŋāĻā§āĻ°āĻŋā§āĻžāĻ¤ā§ āĻ
āĻ¨ā§āĻĒāĻ¸ā§āĻĨāĻŋāĻ¤ āĻāĻŖāĻžāĻāĻŋ āĻšāĻ˛-
- āĻāĻ˛āĻĢāĻž āĻāĻŖāĻž
- āĻĒā§āĻ°ā§āĻāĻ¨
- āĻāĻ˛ā§āĻāĻā§āĻ°āĻ¨
- āĻ¨āĻŋāĻāĻā§āĻ°āĻ¨
Ans. āĻĒā§āĻ°ā§āĻāĻ¨
- āĻāĻāĻāĻŋ āĻ¸āĻ°āĻ˛ āĻĻā§āĻ˛āĻā§āĻ° āĻĻā§āĻ˛āĻ¨āĻāĻžāĻ˛ 50% āĻŦāĻžāĻĄāĻŧāĻžāĻ¤ā§ āĻāĻ° āĻāĻžāĻ°ā§āĻ¯āĻāĻ° āĻĻā§āĻ°ā§āĻā§āĻ¯ā§āĻ° āĻĒāĻ°āĻŋāĻŦāĻ°ā§āĻ¤āĻ¨ āĻāĻ¤ āĻšāĻŦā§?
- 25%
- 100%
- 125%
- 67%
Ans. 125%
- āĻā§āĻ¨ā§ āĻāĻĻāĻ°ā§āĻļ āĻā§āĻ¯āĻžāĻ¸ā§āĻ° āĻ¤āĻžāĻĒāĻŽāĻžāĻ¤ā§āĻ°āĻž āĻā§āĻ˛āĻāĻŋāĻ¨ āĻ¸ā§āĻā§āĻ˛ā§ 4 āĻā§āĻŖ āĻŦā§āĻĻā§āĻ§āĻŋ āĻĒā§āĻ˛ā§ āĻ¤āĻžāĻ° āĻ
āĻŖā§āĻā§āĻ˛ā§āĻ° āĻŽā§āĻ˛ āĻāĻĄāĻŧ āĻŦāĻ°ā§āĻāĻŦā§āĻ āĻāĻ¤ āĻā§āĻŖ āĻŦā§āĻĻā§āĻ§āĻŋ āĻĒāĻžā§?
- 4
- \(1 / 2\)
- 2
- 1
Ans. 2
- 14 āĻŽāĻŋāĻ¨āĻŋāĻ āĻĒāĻ°ā§ āĻāĻāĻāĻŋ āĻ¤ā§āĻāĻ¸ā§āĻā§āĻ°āĻŋāĻ¯āĻŧ āĻŽā§āĻ˛ā§āĻ° \(\frac{1}{16}\) āĻ
āĻāĻļ āĻ
āĻŦāĻļāĻŋāĻˇā§āĻ āĻĨāĻžāĻā§āĨ¤ āĻāĻ° āĻ
āĻ°ā§āĻ§āĻžāĻ¯āĻŧā§ āĻšāĻŦā§-
- \(\frac{7}{8} \mathrm{~min}\)
- \(\frac{7}{4} \mathrm{~min}\)
- \(\frac{7}{2} \mathrm{~min}\)
- \(\frac{14}{3} \mathrm{~min}\)
Ans. \(\frac{7}{2} \mathrm{~min}\)
- āĻā§āĻ¨ā§ āĻĻāĻŋāĻ āĻĒāĻ°āĻŋāĻŦāĻ°ā§āĻ¤ā§ āĻ¤āĻĄāĻŧāĻŋāĻā§āĻāĻžāĻ˛āĻ āĻŦāĻ˛ā§āĻ° āĻāĻĄāĻŧāĻŦāĻ°ā§āĻā§āĻ° āĻŦāĻ°ā§āĻāĻŽā§āĻ˛ āĻŽāĻžāĻ¨ 10 voltāĨ¤ āĻ¤āĻĄāĻŧāĻŋāĻā§āĻāĻžāĻ˛āĻ āĻŦāĻ˛ā§āĻ° āĻļā§āĻ°ā§āĻˇāĻŽāĻžāĻ¨ āĻšāĻ˛ā§-
- 10.00 volt
- 5.00 volt
- 1.41 volt
- 14.14 volt
Ans. 14.14 volt
- a āĻāĻ° āĻŽāĻžāĻ¨ āĻāĻ¤ āĻšāĻ˛ā§ \(\vec{A}=2 \hat{\imath}+2 \hat{\jmath}-\hat{k}\) āĻāĻŦāĻ \(\overrightarrow{\mathrm{B}}=a \hat{\imath}+\hat{\jmath}\) āĻā§āĻā§āĻāĻ°āĻĻā§āĻŦāĻ¯āĻŧ āĻĒāĻ°āĻ¸ā§āĻĒāĻ° āĻ˛āĻŽā§āĻŦ āĻšāĻŦā§?
- 0
- \(\frac{7}{4} \)
- \(-1\)
- 2
Ans. \(-1\)
- āĻāĻ¤ āĻŦā§āĻā§ āĻāĻ˛āĻ˛ā§ āĻāĻāĻāĻŋ āĻ°āĻā§āĻā§āĻ° āĻāĻ¤āĻŋāĻļā§āĻ˛ āĻĻā§āĻ°ā§āĻā§āĻ¯ āĻāĻ° āĻ¨āĻŋāĻļā§āĻāĻ˛ āĻĻā§āĻ°ā§āĻā§āĻ¯ā§āĻ° āĻ
āĻ°ā§āĻ§ā§āĻ āĻšāĻŦā§?
- \(\frac{1}{2} c\)
- \(\frac{\sqrt{3}}{2} c\)
- \(\frac{3}{\sqrt{2}} C\)
- \(\frac{3}{4} C\)
Ans. \(\frac{\sqrt{3}}{2} c\)
- āĻāĻāĻāĻŋ m āĻāĻ°ā§āĻ° āĻŦāĻ¸ā§āĻ¤ā§ āĻāĻ°ā§āĻˇāĻŖāĻŦāĻŋāĻšā§āĻ¨ āĻāĻāĻāĻŋ āĻ¤āĻ˛ā§ v āĻŦā§āĻā§ āĻāĻ˛āĻžāĻ° āĻ¸āĻŽāĻ¯āĻŧ āĻāĻāĻāĻŋ āĻ¸ā§āĻĒā§āĻ°āĻŋāĻ-āĻāĻ° āĻ¸āĻžāĻĨā§ āĻ§āĻžāĻā§āĻāĻž āĻ˛ā§āĻā§ āĻ¸ā§āĻĒā§āĻ°āĻŋāĻāĻāĻŋāĻā§ āĻ¸āĻāĻā§āĻāĻŋāĻ¤ āĻāĻ°āĻ˛āĨ¤ āĻ¸ā§āĻĒā§āĻ°āĻŋāĻāĻāĻŋāĻ° āĻŦāĻ˛-āĻ§ā§āĻ°ā§āĻŦāĻ k āĻšāĻ˛ā§ āĻ¸ā§āĻĒā§āĻ°āĻŋāĻāĻāĻŋ āĻāĻ¤āĻā§āĻā§ āĻ¸āĻāĻā§āĻāĻŋāĻ¤ āĻšāĻŦā§?
- \(\sqrt{\frac{m}{k}} v\)
- \(\sqrt{\frac{k}{m}} v\)
- \(\sqrt{k v}\)
- \(\sqrt{m v}\)
Ans. \(\sqrt{\frac{m}{k}} v\)
- āĻ
āĻāĻŋāĻāĻ°ā§āĻˇā§āĻ¯āĻŧ āĻ¤ā§āĻŦāĻ°āĻŖ g āĻŦāĻ¨āĻžāĻŽ āĻĒā§āĻĨāĻŋāĻŦā§ āĻĒā§āĻˇā§āĻ āĻšāĻ¤ā§ āĻāĻā§āĻ°āĻ¤āĻž h āĻāĻ° āĻ˛ā§āĻāĻāĻŋāĻ¤ā§āĻ° āĻā§āĻ¨āĻāĻŋ?
Ans.
- āĻāĻ¯āĻŧāĻ āĻāĻ° āĻĻā§āĻŦāĻŋ-āĻāĻŋāĻ° āĻĒāĻ°ā§āĻā§āĻˇāĻŖā§āĻ° āĻāĻŋāĻ°āĻĻā§āĻŦāĻ¯āĻŧā§āĻ° āĻŽāĻ§ā§āĻ¯āĻŦāĻ°ā§āĻ¤ā§ āĻĻā§āĻ°āĻ¤ā§āĻŦ āĻšāĻ˛ā§ d āĻāĻŦāĻ āĻāĻŋāĻ°āĻĻā§āĻŦāĻ¯āĻŧ āĻĨā§āĻā§ āĻĒāĻ°ā§āĻĻāĻž D āĻĻā§āĻ°āĻ¤ā§āĻŦā§ āĻ
āĻŦāĻ¸ā§āĻĨāĻŋāĻ¤āĨ¤
āĻĒāĻ°ā§āĻĻāĻžāĻ° āĻāĻĒāĻ° āĻĒā§āĻ°āĻ¤āĻŋ āĻāĻāĻ āĻĒā§āĻ°āĻ¸ā§āĻĨā§ āĻĄā§āĻ°āĻžāĻ° āĻ¸āĻāĻā§āĻ¯āĻž āĻšāĻ˛ā§-- \(\frac{D}{d \lambda}\)
- \(\frac{d}{D \lambda}\)
- \(\frac{\lambda}{D d}\)
- \(\frac{d^{2}}{\lambda D^{3}}\)
Ans. \(\frac{d}{D \lambda}\)
- āĻāĻāĻāĻŋ āĻŦāĻ¸ā§āĻ¤ā§ 12 m āĻŦā§āĻ¯āĻžāĻ¸āĻžāĻ°ā§āĻ§ā§āĻ° āĻāĻāĻāĻŋ āĻŦā§āĻ¤ā§āĻ¤āĻžāĻāĻžāĻ° āĻĒāĻĨā§ āĻāĻ˛āĻŽāĻžāĻ¨ āĻāĻā§āĨ¤ āĻāĻāĻāĻŋ āĻŽā§āĻšā§āĻ°ā§āĻ¤ā§ āĻŦā§āĻ¤ā§āĻ¤āĻžāĻāĻžāĻ° āĻĒāĻĨā§ āĻāĻ° āĻĻā§āĻ°ā§āĻ¤āĻŋ
6 m/s āĻāĻŦāĻ āĻāĻāĻŋ \(4 \mathrm{~m} / \mathrm{s}^{2}\) āĻšāĻžāĻ°ā§ āĻŦā§āĻĻā§āĻ§āĻŋ āĻĒāĻžāĻā§āĻā§āĨ¤ āĻ āĻŽā§āĻšā§āĻ°ā§āĻ¤ā§ āĻŦāĻ¸ā§āĻ¤ā§āĻāĻŋāĻ° āĻ¤ā§āĻŦāĻ°āĻŖā§āĻ° āĻŽāĻžāĻ¨ āĻāĻ¤?- \(2 \mathrm{~m} / \mathrm{s}^{2}\)
- \(3 \mathrm{~m} / \mathrm{s}^{2}\)
- \(4 \mathrm{~m} / \mathrm{s}^{2}\)
- \(5 \mathrm{~m} / \mathrm{s}^{2}\)
Ans. \(5 \mathrm{~m} / \mathrm{s}^{2}\)
āĻĒāĻĻāĻžāĻ°ā§āĻĨāĻŦāĻŋāĻā§āĻāĻžāĻ¨ āĻ˛āĻŋāĻāĻŋāĻ¤ āĻ āĻāĻļ
ā§§āĨ¤āĻāĻāĻāĻ¨ āĻŦāĻžāĻāĻ¸āĻžāĻāĻā§āĻ˛ āĻāĻ°ā§āĻšā§ āĻ¸āĻŽāĻ¤āĻ˛ āĻŦāĻā§āĻ° āĻĒāĻĨā§ v āĻŦā§āĻā§ āĻā§āĻ°āĻŽāĻŖ āĻāĻ°āĻā§āĨ¤ āĻ¸āĻžāĻāĻā§āĻ˛ā§āĻ° āĻāĻžāĻāĻž āĻāĻŦāĻ āĻĒāĻĨā§āĻ° āĻŽāĻ§ā§āĻ¯āĻāĻžāĻ° āĻ¸ā§āĻĨāĻŋāĻ¤āĻŋ āĻāĻ°ā§āĻˇāĻ¨ āĻā§āĻ¨āĻžāĻāĻ \(\mu_{s}=0.50\)āĨ¤ āĻ¸āĻžāĻāĻā§āĻ˛ā§āĻ° āĻāĻĒāĻ° āĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻ°āĻ¤ āĻŦāĻ˛ āĻ¸āĻŽā§āĻšā§āĻ° āĻ¨āĻžāĻŽ āĻ˛āĻŋāĻāĨ¤ āĻ¯āĻĻāĻŋ āĻŦā§āĻ v = 10 m/s āĻšāĻ¯āĻŧ, āĻ¤āĻŦā§ āĻ¸āĻ°ā§āĻŦāĻ¨āĻŋāĻŽā§āĻ¨ āĻāĻ¤ āĻŦā§āĻ¯āĻžāĻ¸āĻžāĻ°ā§āĻ§ā§āĻ° āĻŦā§āĻ¤ā§āĻ¤āĻžāĻāĻžāĻ° āĻĒāĻĨā§ āĻāĻ°ā§āĻšā§āĻāĻŋ āĻā§āĻ°āĻŽāĻŖ āĻāĻ°āĻ¤ā§ āĻĒāĻžāĻ°āĻŦā§?
āĻā§āĻ°āĻŋā§āĻžāĻ°āĻ¤ āĻŦāĻ˛āĻ¸āĻŽā§āĻš:
- āĻāĻāĻ¨
- āĻāĻ°ā§āĻˇāĻŖ āĻŦāĻ˛
- āĻ¤āĻ˛ā§āĻ° āĻāĻ˛ā§āĻ˛āĻŽā§āĻŦ āĻĒā§āĻ°āĻ¤āĻŋāĻā§āĻ°āĻŋā§āĻž
āĻā§āĻ¨ā§āĻĻā§āĻ°āĻŽā§āĻā§ āĻŦāĻ˛ = āĻāĻ°ā§āĻˇāĻŖ āĻŦāĻ˛
āĻŦāĻž, \(\frac{m v^{2}}{r}=\mu R\)
āĻŦāĻž, \(\frac{m v^{2}}{r}=\mu m g\)
āĻŦāĻž, \(\frac{v^{2}}{r}=\mu g\)
āĻŦāĻž, \(r=\frac{v^{2}}{\mu g}\)
āĻŦāĻž, \(r=\frac{10^{2}}{0.5 \times 10}\)
\(\therefore r=20 m\) (Ans.)
ā§¨āĨ¤ āĻāĻāĻāĻŋ āĻāĻ¤ā§āĻ¤āĻ˛ āĻ˛ā§āĻ¨ā§āĻ¸ā§āĻ° āĻĢā§āĻāĻžāĻ¸ āĻĻā§āĻ°āĻ¤ā§āĻŦ 10 cmāĨ¤ āĻ˛ā§āĻ¨ā§āĻ¸ā§āĻ° āĻŦāĻžāĻŽ āĻĒāĻžāĻļā§ 30 cm āĻĻā§āĻ°ā§ āĻāĻāĻāĻŋ āĻŦāĻ¸ā§āĻ¤ā§ āĻ°āĻžāĻāĻž āĻšāĻ˛ā§āĨ¤
āĻĒā§āĻ°āĻ¤āĻŋāĻŦāĻŋāĻŽā§āĻŦā§āĻ° āĻ
āĻŦāĻ¸ā§āĻĨāĻžāĻ¨, āĻĒā§āĻ°āĻā§āĻ¤āĻŋ āĻ āĻŦāĻŋāĻŦāĻ°ā§āĻ§āĻ¨ āĻ¨āĻŋāĻ°ā§āĻŖāĻ¯āĻŧ āĻāĻ°āĨ¤
\(f=10 \mathrm{~cm}\)
\(u=30 \mathrm{~cm}\)
\(\frac{1}{v}+\frac{1}{u}=\frac{1}{f}\)
āĻŦāĻž, \(\frac{1}{v}=\frac{1}{f}-\frac{1}{u}\)
āĻŦāĻž, \(\frac{1}{v}=\frac{1}{10}-\frac{1}{30}\)
āĻŦāĻž, \(\frac{1}{v}=\frac{3-1}{30}\)
āĻŦāĻž, \(\frac{1}{v}=\frac{2}{30}\)
āĻŦāĻž, \(\frac{1}{v}=\frac{1}{15}\)
āĻŦāĻž, \(v=15\)
āĻŦāĻž, āĻŦāĻŋāĻŦāĻ°ā§āĻ§āĻ¨, \(m=-\frac{v}{u}\)
\(=-\frac{15}{30}\)
\(=-0.5\)
āĻŦāĻžāĻ¸ā§āĻ¤āĻŦ, āĻāĻ˛ā§āĻā§, āĻāĻ°ā§āĻŦāĻŋāĻ¤ āĻŦāĻŋāĻŽā§āĻŦ āĻāĻ āĻŋāĻ¤ āĻšāĻŦā§āĨ¤
ā§ŠāĨ¤ āĻāĻŋāĻ¤ā§āĻ°ā§āĻ° āĻŦāĻ°ā§āĻ¤āĻ¨ā§āĻāĻŋāĻ° \(4.0 \Omega\) āĻ°ā§āĻ§ā§āĻ° āĻĒā§āĻ°āĻžāĻ¨ā§āĻ¤āĻĻā§āĻŦāĻ¯āĻŧā§āĻ° āĻŽāĻ§ā§āĻ¯ā§ āĻŦāĻŋāĻāĻŦ āĻĒāĻžāĻ°ā§āĻĨāĻā§āĻ¯ āĻāĻ¤ āĻšāĻŦā§?
\(R=\frac{2}{3}+\left(\frac{1}{2}+\frac{1}{4}\right)^{-1}\)
\(R=\frac{2}{3}+\left(\frac{2+1}{4}\right)^{-1}\)
\(=\frac{2}{3}+\frac{4}{3}\)
\(=\frac{2+4}{3}\)
\(=2 \Omega\)
\(I=\frac{V}{R}=\frac{2}{2}=1 A\)
\(\frac{2}{3} \Omega\) āĻ°ā§āĻ§ā§āĻ° āĻŦāĻŋāĻāĻŦ, \(V_{\frac{2}{3}}=\frac{2}{3} \times 1=\frac{2}{3} V\)
\(4.0 \Omega\) āĻ°ā§āĻ§ā§āĻ° āĻŦāĻŋāĻāĻŦ \(=2-\frac{2}{3}\)
\(=\frac{6-2}{3}\)
\(=\frac{4}{3} V\)
ā§ĒāĨ¤ āĻāĻāĻāĻŋ āĻāĻžāĻ°ā§āĻ¨ā§ āĻāĻā§āĻāĻŋāĻ¨ \(T_{H}=900 \mathrm{~K}\) āĻāĻŦāĻ \(T_{L}=300 \mathrm{~K}\) āĻ¤āĻžāĻĒāĻŽāĻžāĻ¤ā§āĻ°āĻžāĻ° āĻŽāĻ§ā§āĻ¯ā§ āĻāĻžāĻ°ā§āĻ¯āĻ°āĻ¤āĨ¤ āĻāĻā§āĻāĻŋāĻ¨āĻāĻŋ āĻĒā§āĻ°āĻ¤āĻŋ āĻāĻā§āĻ°ā§ 0.25 s
āĻ¸āĻŽāĻ¯āĻŧā§ 1200 J āĻāĻžāĻ āĻāĻ°ā§āĨ¤ āĻāĻā§āĻ āĻ¤āĻžāĻĒāĻŽāĻžāĻ¤ā§āĻ°āĻžāĻ¯āĻŧ āĻ§āĻžāĻ°āĻ āĻĨā§āĻā§ āĻļāĻā§āĻ¤āĻŋ āĻ¸ā§āĻĨāĻžāĻ¨āĻžāĻ¨ā§āĻ¤āĻ°ā§āĻ° āĻĢāĻ˛ā§ āĻāĻ° āĻāĻžāĻ°ā§āĻ¯āĻāĻ°ā§ āĻĒāĻĻāĻžāĻ°ā§āĻĨā§āĻ° (āĻ
āĻ°ā§āĻĨāĻžā§ āĻāĻĻāĻ°ā§āĻļ āĻā§āĻ¯āĻžāĻ¸ā§āĻ°) āĻāĻ¨āĻā§āĻ°āĻĒāĻŋ āĻŦā§āĻĻā§āĻ§āĻŋ āĻŦā§āĻ° āĻāĻ°āĨ¤
\(\frac{T_{H}}{T_{L}}=\frac{Q_{H}}{Q_{L}}\)
āĻŦāĻž, \(\frac{900}{300}=\frac{Q_{H}}{Q_{L}}\)
āĻŦāĻž, \(Q_{H}=3 Q_{L}\)
\(W=Q_{H}-Q_{L}\)
āĻŦāĻž, \(1200=3 Q_{L}-Q_{L}\)
āĻŦāĻž, \(1200=2 Q_{L}\)
\(Q_{L}=600 \mathrm{~J}\)
\(\therefore Q_{H}=3 \times 600=1800 \mathrm{~J}\)
\(\Delta S_{H}=\frac{Q_{H}}{T_{H}}\)
\(=\frac{1800}{900} \mathrm{JK}^{-1}\)
\(=2 \mathrm{JK}^{-1}\)
\(=2 \times 4 w k^{-1}\)
\(=8 w k^{-1}\)
āĻ°āĻ¸āĻžā§āĻ¨
-
āĻŦāĻŋāĻļā§āĻĻā§āĻ§ āĻĒāĻžāĻ¨āĻŋāĻ¤ā§ \(\mathrm{OH}^{-}\) āĻāĻŦāĻ \(\mathrm{H}^{+}\) āĻāĻ° āĻŽā§āĻ˛āĻžāĻ° āĻāĻ¨āĻŽāĻžāĻ¤ā§āĻ°āĻž āĻāĻ° āĻ
āĻ¨ā§āĻĒāĻžāĻ¤ āĻāĻ¤?
- 7
- \(10^{-7}\)
- 0
- 1
Ans. 1
-
āĻ āĻˇā§āĻāĻ āĻ¸āĻŽā§āĻĒā§āĻ°āĻ¸āĻžāĻ°āĻŖ āĻāĻ° āĻāĻĻāĻžāĻšāĻ°āĻŖ āĻā§āĻ¨āĻāĻŋ?
- \(\mathrm{BeCl}_{2}\)
- \(\mathrm{PCl}_{5}\)
- \(\mathrm{BCl}_{3}\)
- \(\mathrm{Cl}_{2}\)
Ans. \(\mathrm{PCl}_{5}\)
- āĻ¨āĻŋāĻā§āĻ° āĻā§āĻ¨ āĻ¤āĻĄāĻŧāĻŋā§āĻĻā§āĻŦāĻžāĻ°āĻāĻŋāĻ° āĻĒā§āĻ°āĻŽāĻžāĻŖ āĻŦāĻŋāĻāĻžāĻ°āĻŖ āĻŦāĻŋāĻāĻŦā§āĻ° āĻŽāĻžāĻ¨ āĻ¸āĻŦāĻā§āĻ¯āĻŧā§ āĻāĻŽ?
- \(\mathrm{H}^{+}(\mathrm{aq}) / \mathrm{H}_{2}(\mathrm{~g}), \mathrm{Pt}\)
- \(\mathrm{Cu}^{2+}(\mathrm{aq}) / \mathrm{Cu}(\mathrm{s})\)
- \(\mathrm{Na}^{+}(\mathrm{aq}) / \mathrm{Na}(\mathrm{s})\)
- \(\mathrm{Pt}(\mathrm{s}) / \mathrm{F}(\mathrm{g}) / \mathrm{F}^{-}(\mathrm{aq})\)
Ans. \(\mathrm{Na}^{+}(\mathrm{aq}) / \mathrm{Na}(\mathrm{s})\)
- aA â bB āĻŦāĻŋāĻā§āĻ°āĻŋā§āĻžāĻāĻŋāĻ° āĻā§āĻˇā§āĻ¤ā§āĻ°ā§ āĻā§āĻ¨āĻāĻŋ āĻŦāĻŋāĻā§āĻ°āĻŋā§āĻžāĻ° āĻšāĻžāĻ° āĻ¨āĻŋāĻ°ā§āĻĻā§āĻļ āĻāĻ°ā§?
- \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d} t}\)
- \(-\frac{1}{a} \frac{d[A]}{d t}\)
- \(-\frac{d[B]}{d t}\)
- \(-\frac{1}{b} \frac{d[A]}{d t}\)
Ans. \(-\frac{1}{a} \frac{d[A]}{d t}\)
- āĻĻā§āĻ§ā§āĻ° āĻĒā§āĻ°ā§āĻāĻŋāĻ¨ āĻā§āĻ¨āĻāĻŋ?
- āĻā§āĻ¯āĻžāĻ°ā§āĻāĻŋāĻ¨
- āĻ˛āĻŋāĻĒāĻŋāĻĄ
- āĻā§āĻ¯āĻžāĻ¸āĻŋāĻ¨
- āĻ˛ā§āĻ¯āĻžāĻā§āĻāĻžāĻ ā§āĻ¯āĻžāĻ˛āĻŦā§āĻŽāĻŋāĻ¨
Ans. āĻā§āĻ¯āĻžāĻ¸āĻŋāĻ¨
- āĻ¨āĻŋāĻā§āĻ° āĻā§āĻ¨ āĻ¯ā§āĻāĻāĻŋ āĻ¸āĻŋāĻ˛āĻāĻžāĻ° āĻĻāĻ°ā§āĻĒāĻŖ āĻĒāĻ°ā§āĻā§āĻˇāĻž āĻĻā§āĻ¯āĻŧ?
- āĻĒā§āĻ°āĻĒāĻžāĻ¨ā§āĻ¨
- āĻĒā§āĻ°āĻĒāĻŋāĻ¨
- āĻĒā§āĻ°āĻĒāĻžāĻ¨āĻ˛
- āĻĒā§āĻ°āĻĒāĻžāĻ¨ā§āĻ¯āĻžāĻ˛
Ans. āĻĒā§āĻ°āĻĒāĻžāĻ¨ā§āĻ¯āĻžāĻ˛
- āĻŦā§āĻ¨āĻāĻŋāĻ¨ āĻŦāĻ˛āĻ¯āĻŧ āĻ¸āĻā§āĻ°āĻŋāĻ¯āĻŧāĻāĻžāĻ°ā§ āĻŽā§āĻ˛āĻ āĻā§āĻ¨āĻāĻŋ?
- \(-\mathrm{NH}_{2}\)
- \(-\mathrm{NO}_{2}\)
- -CHO
- \(-\mathrm{SO}_{3} \mathrm{H}\)
Ans. \(-\mathrm{NH}_{2}\)
- NaCl-āĻāĻ° āĻ¸āĻžāĻĨā§ \(\mathrm{H}_{2} \mathrm{O}\) āĻ¯ā§āĻ āĻāĻ°āĻ˛ā§ āĻā§āĻ¨āĻāĻŋ āĻāĻā§?
- \(\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})\)
- \(\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq})\)
- \(\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})\)
- \(\mathrm{Na}^{+}+\mathrm{Cl}^{-}\)
Ans. \(\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})\)
- āĻšāĻžāĻāĻĄā§āĻ°ā§āĻ¨āĻŋāĻ¯āĻŧāĻžāĻŽ āĻāĻ¯āĻŧāĻ¨ā§ āĻā§āĻ¨ āĻā§āĻ¨ āĻŦāĻ¨ā§āĻ§āĻ¨ āĻŦāĻŋāĻĻā§āĻ¯āĻŽāĻžāĻ¨?
- āĻāĻ¯āĻŧāĻ¨āĻŋāĻ āĻ āĻ¸āĻŽāĻ¯ā§āĻā§ āĻŦāĻ¨ā§āĻ§āĻ¨
- āĻāĻ¯āĻŧāĻ¨āĻŋāĻ āĻ āĻ¸āĻ¨ā§āĻ¨āĻŋāĻŦā§āĻļ āĻŦāĻ¨ā§āĻ§āĻ¨
- āĻ¸āĻŽāĻ¯ā§āĻā§ āĻ āĻ¸āĻ¨ā§āĻ¨āĻŋāĻŦā§āĻļ āĻŦāĻ¨ā§āĻ§āĻ¨
- āĻāĻ¯āĻŧāĻ¨āĻŋāĻ āĻ āĻšāĻžāĻāĻĄā§āĻ°ā§āĻā§āĻ¨ āĻŦāĻ¨ā§āĻ§āĻ¨
Ans. āĻ¸āĻŽāĻ¯ā§āĻā§ āĻ āĻ¸āĻ¨ā§āĻ¨āĻŋāĻŦā§āĻļ āĻŦāĻ¨ā§āĻ§āĻ¨
- āĻ¨āĻŋāĻā§āĻ° āĻā§āĻ¨āĻāĻŋ āĻ¸āĻ¤ā§āĻ¯ āĻ¨āĻ¯āĻŧ?
- \(\mathrm{K}_{w}=1 \times 10^{-14}\)
- \(\mathrm{pK}_{w}=14\)
- \(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{w}\)
- \(K_{w}=1 \times 10^{14} M\)
Ans. \(K_{w}=1 \times 10^{14} M\)
- āĻā§āĻ°ā§āĻŽāĻŋāĻ āĻāĻ¸āĻŋāĻĄ āĻĻā§āĻŦāĻžāĻ°āĻž āĻāĻžāĻāĻāĻĒāĻžāĻ¤ā§āĻ° āĻĒāĻ°āĻŋāĻˇā§āĻāĻžāĻ° āĻāĻ°āĻžāĻ° āĻ¸āĻŽāĻ¯āĻŧ āĻā§āĻ¨ āĻ§āĻ°āĻ¨ā§āĻ° āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻž āĻāĻā§?
- āĻāĻžāĻ°āĻŖ
- āĻĒā§āĻ°āĻ¤āĻŋāĻ¸ā§āĻĨāĻžāĻĒāĻ¨
- āĻĒā§āĻ°āĻļāĻŽāĻ¨
- āĻŦāĻŋāĻāĻžāĻ°āĻŖ
Ans. āĻāĻžāĻ°āĻŖ
- As- āĻ āĻā§āĻāĻŋ āĻ¯ā§āĻžāĻāĻ¨ āĻāĻ˛ā§āĻāĻā§āĻ°āĻ¨ āĻāĻā§?
- 3
- 4
- 5
- 6
Ans. 5
-
āĻ
ā§āĻ¯āĻžāĻ˛āĻāĻžāĻāĻ˛ āĻšā§āĻ¯āĻžāĻ˛āĻžāĻāĻĄā§āĻ° E2 āĻ
āĻĒāĻ¸āĻžāĻ°āĻŖ āĻŦāĻŋāĻā§āĻ°āĻŋā§āĻžā§, āĻ
ā§āĻ¯āĻžāĻ˛āĻā§āĻšāĻ˛āĻŋāĻ KOH/NaOH āĻāĻ° āĻā§āĻŽāĻŋāĻāĻž āĻšāĻ˛ā§-
- āĻā§āĻˇāĻžāĻ°
- āĻĻā§āĻ°āĻžāĻŦāĻ
- āĻ āĻ¨ā§āĻāĻāĻ
- āĻ¨āĻŋāĻāĻā§āĻ˛āĻŋāĻāĻĢāĻžāĻāĻ˛
Ans. āĻā§āĻˇāĻžāĻ°
- \(\mathrm{R}_{\mathrm{H}}\) āĻ°āĻŋāĻĄāĻŦāĻžāĻ°ā§āĻ āĻ§ā§āĻ°ā§āĻŦāĻ āĻšāĻ˛ā§, āĻšāĻžāĻāĻĄā§āĻ°ā§āĻā§āĻ¨ āĻĒāĻ°āĻŽāĻžāĻŖā§āĻ° āĻŦāĻ°ā§āĻŖāĻžāĻ˛āĻŋāĻ¤ā§ āĻŦāĻžāĻŽāĻžāĻ° āĻ¸āĻŋāĻ°āĻŋāĻā§āĻ° āĻāĻ¨ā§āĻ¯ āĻ¸āĻ°ā§āĻŦāĻ¨āĻŋāĻŽā§āĻ¨ āĻāĻ¤ āĻ¤āĻ°āĻā§āĻ, āĻ¸āĻāĻā§āĻ¯āĻžāĻ° āĻ°āĻļā§āĻŽāĻŋ āĻŦāĻŋāĻāĻŋāĻ°āĻŋāĻ¤ āĻšā§?
- \(\frac{3}{4} \mathrm{R}_{\mathrm{H}}\)
- \(\frac{5}{36} \mathrm{R}_{\mathrm{H}}\)
- \(\frac{3}{16} \mathrm{R}_{\mathrm{H}}\)
- \(\frac{9}{144} \mathrm{R}_{\mathrm{H}}\)
Ans. \(\frac{5}{36} \mathrm{R}_{\mathrm{H}}\)
-
āĻ¨āĻŋāĻŽā§āĻ¨ā§āĻ° āĻŦāĻŋāĻā§āĻ°āĻŋā§āĻžāĻā§āĻ˛ā§ āĻšāĻ¤ā§ āĻāĻžāĻ°ā§āĻŦāĻ¨ā§āĻ° āĻāĻŖāĻ¨āĻžāĻā§āĻ¤ āĻĻāĻšāĻ¨ āĻ¤āĻžāĻĒ āĻšāĻ˛ā§-
(i) \(\mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) \quad \Delta \mathrm{H}=-111 \mathrm{~kJ} / \mathrm{mol}\)
(ii) \(\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-283 \mathrm{~kJ} / \mathrm{mol}\)- 173 \(\mathrm{~kJ} / \mathrm{mol}\)
- -394 \(\mathrm{~kJ} / \mathrm{mol}\)
- 373 \(\mathrm{~kJ} / \mathrm{mol}\)
- 394 \(\mathrm{~kJ} / \mathrm{mol}\)
Ans. -394 \(\mathrm{~kJ} / \mathrm{mol}\)
āĻ°āĻ¸āĻžāĻ¯āĻŧāĻ¨ (chemistry) āĻ˛āĻŋāĻāĻŋāĻ¤ āĻ āĻāĻļ
ā§ĢāĨ¤ (āĻ) āĻ°āĻžāĻ¸āĻžāĻ¯āĻŧāĻ¨āĻŋāĻ āĻŦāĻ¨ā§āĻ§āĻ¨ āĻā§? āĻ¨ā§āĻ¯āĻžāĻĢāĻĨāĻžāĻ˛āĻŋāĻ¨ āĻ
āĻŖā§āĻ¤ā§ āĻāĻ¯āĻŧāĻāĻŋ āĻāĻŦāĻ āĻā§ āĻā§ āĻŦāĻ¨ā§āĻ§āĻ¨ āĻŦāĻŋāĻĻā§āĻ¯āĻŽāĻžāĻ¨?
āĻ°āĻžāĻ¸āĻžāĻ¯āĻŧāĻ¨āĻŋāĻ āĻŦāĻ¨ā§āĻ§āĻ¨: āĻāĻāĻāĻŋ āĻ°āĻžāĻ¸āĻžāĻ¯āĻŧāĻ¨āĻŋāĻ āĻŦāĻ¨ā§āĻ§āĻ¨ āĻĒāĻ°āĻŽāĻžāĻŖā§, āĻāĻ¯āĻŧāĻ¨ āĻŦāĻž āĻ
āĻŖā§āĻ° āĻŽāĻ§ā§āĻ¯ā§ āĻāĻāĻāĻŋ āĻ¸ā§āĻĨāĻžāĻ¯āĻŧā§ āĻāĻāĻ°ā§āĻˇāĻŖ āĻ¯āĻž āĻ°āĻžāĻ¸āĻžāĻ¯āĻŧāĻ¨āĻŋāĻ āĻ¯ā§āĻ āĻāĻ āĻ¨ āĻāĻ°ā§āĨ¤
āĻ¨ā§āĻ¯āĻžāĻĢāĻĨāĻžāĻ˛āĻŋāĻ¨ āĻ
āĻŖā§āĻ¤ā§ āĻŽā§āĻ 24āĻāĻŋ āĻŦāĻ¨ā§āĻ§āĻ¨ āĻ°ā§ā§āĻā§ āĻ¯āĻžāĻ° āĻŽāĻ§ā§āĻ¯ā§ 5āĻāĻŋ āĻĒāĻžāĻ āĻŦāĻ¨ā§āĻ§āĻ¨ āĻāĻŦāĻ 19āĻāĻŋ āĻ¸āĻŋāĻāĻŽāĻž āĻŦāĻ¨ā§āĻ§āĻ¨āĨ¤
(āĻ) āĻĒā§āĻ°āĻžāĻāĻŽāĻžāĻ°āĻŋ, āĻ¸ā§āĻā§āĻ¨ā§āĻĄāĻžāĻ°āĻŋ āĻ āĻāĻžāĻ°āĻ¸āĻŋāĻ¯āĻŧāĻžāĻ°āĻŋ āĻ
ā§āĻ¯āĻžāĻ˛āĻā§āĻšāĻ˛āĻā§ āĻā§āĻāĻžāĻŦā§ āĻāĻ˛āĻžāĻĻāĻž āĻāĻ°āĻž āĻ¯āĻžāĻ¯āĻŧ?
āĻāĻžā§ HCl āĻ \(ZnCl_2\) āĻāĻ° āĻĻā§āĻ°āĻŦāĻŖāĻā§ âāĻ˛ā§āĻāĻžāĻ¸ āĻŦāĻŋāĻāĻžāĻ°āĻ āĻŦāĻ˛ā§ āĻ¯āĻž \(3^o\) āĻ ā§āĻ¯āĻžāĻ˛āĻā§āĻšāĻ˛ā§āĻ° āĻ¸āĻžāĻĨā§ āĻŦāĻŋāĻā§āĻ°āĻŋā§āĻžāĻ° āĻāĻ°ā§ āĻ¸āĻžāĻĨā§ āĻ¸āĻžāĻĨā§āĻ āĻ ā§āĻ¯āĻžāĻ˛āĻāĻžāĻāĻ˛ āĻā§āĻ˛ā§āĻ°āĻžāĻāĻĄā§āĻ° āĻ¸āĻžāĻĻāĻž āĻ āĻ§:āĻā§āĻˇā§āĻĒ āĻ¤ā§āĻ°āĻŋ āĻāĻ°ā§, \(2^o\) āĻ ā§āĻ¯āĻžāĻ˛āĻā§āĻšāĻ˛ā§āĻ° āĻ¸āĻžāĻĨā§ āĻāĻ¸ā§āĻ¤ā§ āĻāĻ¸ā§āĻ¤ā§ āĻŦāĻŋāĻā§āĻ°āĻŋā§āĻžāĻ° āĻāĻ°ā§(5-10 āĻŽāĻŋāĻ¨āĻŋāĻā§) āĻ ā§āĻ¯āĻžāĻ˛āĻāĻžāĻāĻ˛ āĻā§āĻ˛ā§āĻ°āĻžāĻāĻĄā§āĻ° āĻ āĻ§:āĻā§āĻˇā§āĻĒ āĻ¤ā§āĻ°āĻŋ āĻāĻ°ā§ āĻāĻŦāĻ \(1^o\) āĻ ā§āĻ¯āĻžāĻ˛āĻā§āĻšāĻ˛ā§āĻ° āĻ¸āĻžāĻĨā§ āĻāĻā§āĻˇ āĻ¤āĻžāĻĒāĻŽāĻžāĻ¤ā§āĻ°āĻžā§ āĻā§āĻ¨ āĻŦāĻŋāĻā§āĻ°āĻŋā§āĻžāĻ° āĻāĻ°ā§ āĻ¨āĻž āĻ¤āĻŦā§ āĻŽāĻŋāĻļā§āĻ°āĻŖāĻā§ āĻāĻ¤ā§āĻ¤āĻĒā§āĻ¤ āĻāĻ°āĻ˛ā§ āĻ āĻ¤ā§ āĻ§ā§āĻ°ā§ āĻ ā§āĻ¯āĻžāĻ˛āĻāĻžāĻāĻ˛ āĻā§āĻ˛ā§āĻ°āĻžāĻāĻĄ āĻ¤ā§āĻ°āĻŋ āĻāĻ°ā§āĨ¤
ā§ŦāĨ¤ āĻ āĻ°āĻŦāĻŋāĻāĻžāĻ˛ āĻā§? āĻĒāĻžāĻāĻāĻāĻŋ d-āĻ āĻ°āĻŦāĻŋāĻāĻžāĻ˛ā§āĻ° āĻ¨āĻžāĻŽ āĻ˛āĻŋāĻ āĻāĻŦāĻ āĻāĻĻā§āĻ° āĻĻā§āĻŦāĻŋ-āĻŽāĻžāĻ¤ā§āĻ°āĻŋāĻ āĻāĻŋāĻ¤ā§āĻ° āĻ āĻāĻāĻ¨ āĻāĻ°āĨ¤ āĻ¤āĻĄāĻŧāĻŋā§ āĻāĻŖāĻžāĻ¤ā§āĻŽāĻāĻ¤āĻž āĻāĻŦāĻ āĻāĻ˛ā§āĻā§āĻā§āĻ°āĻ¨ āĻāĻ¸āĻā§āĻ¤āĻŋāĻ° āĻŽāĻ§ā§āĻ¯ā§ āĻĒā§āĻ°āĻ§āĻžāĻ¨ āĻĒāĻžāĻ°ā§āĻĨāĻā§āĻ¯ āĻā§?
āĻ
āĻ°āĻŦāĻŋāĻāĻžāĻ˛:āĻ¨āĻŋāĻāĻā§āĻ˛āĻŋāĻ¯āĻŧāĻžāĻ¸ā§āĻ° āĻāĻ¤ā§āĻ°ā§āĻĻāĻŋāĻā§ āĻāĻ˛ā§āĻāĻā§āĻ°āĻ¨ā§āĻ° āĻāĻŦāĻ°ā§āĻ¤āĻ¨ā§āĻ° āĻ¸āĻ°ā§āĻŦāĻžāĻ§āĻŋāĻ āĻ¸āĻŽā§āĻāĻžāĻŦā§āĻ¯ āĻ
āĻā§āĻāĻ˛āĻā§ āĻ
āĻ°āĻŦāĻŋāĻāĻžāĻ˛ āĻŦāĻ˛ā§āĨ¤
āĻā§āĻ¯āĻžāĻ¸ā§āĻ¯āĻŧ āĻ āĻŦāĻ¸ā§āĻĨāĻžāĻ¯āĻŧ āĻā§āĻ¨ā§ āĻŽā§āĻ˛ā§āĻ° āĻāĻ āĻŽā§āĻ˛ āĻā§āĻ¯āĻžāĻ¸ā§āĻ¯āĻŧ āĻĒāĻ°āĻŽāĻžāĻŖā§āĻ¤ā§ āĻāĻ āĻŽā§āĻ˛ āĻāĻ˛ā§āĻāĻā§āĻ°āĻ¨ āĻĒā§āĻ°āĻŦā§āĻļ āĻāĻ°āĻŋāĻ¯āĻŧā§ āĻāĻ āĻŽā§āĻ˛ āĻāĻŖāĻžāĻ¤ā§āĻŽāĻ āĻāĻ¯āĻŧāĻ¨ā§ āĻĒāĻ°āĻŋāĻŖāĻ¤ āĻāĻ°āĻ¤ā§ āĻ¯ā§ āĻļāĻā§āĻ¤āĻŋ āĻĻāĻ°āĻāĻžāĻ°, āĻ¤āĻžāĻā§ āĻ āĻŽā§āĻ˛ā§āĻ° āĻāĻ˛ā§āĻāĻā§āĻ°āĻ¨ āĻāĻ¸āĻā§āĻ¤āĻŋ āĻŦāĻ˛ā§āĨ¤ āĻāĻ° āĻĻā§āĻāĻŋ āĻĒāĻ°āĻŽāĻžāĻŖā§ āĻ¯āĻāĻ¨ āĻ¸āĻŽāĻ¯ā§āĻā§ āĻŦāĻ¨ā§āĻ§āĻ¨ā§ āĻāĻŦāĻĻā§āĻ§ āĻšāĻ¯āĻŧ āĻ¤āĻāĻ¨ āĻ āĻŖā§āĻ° āĻĒāĻ°āĻŽāĻžāĻŖā§āĻā§āĻ˛ā§ āĻŦāĻ¨ā§āĻ§āĻ¨ā§āĻ° āĻāĻ˛ā§āĻāĻā§āĻ°āĻ¨ āĻĻā§āĻāĻŋāĻā§ āĻ¨āĻŋāĻā§āĻ° āĻĻāĻŋāĻā§ āĻāĻāĻ°ā§āĻˇāĻŖ āĻāĻ°ā§āĨ¤ āĻāĻ āĻāĻāĻ°ā§āĻˇāĻŖāĻā§ āĻ¤āĻĄāĻŧāĻŋā§ āĻāĻŖāĻžāĻ¤ā§āĻŽāĻāĻ¤āĻž āĻŦāĻ˛ā§āĨ¤
ā§āĨ¤(āĻ)
(i) \(\mathrm{X} \stackrel{\mathrm{K} \mathrm{O} \mathrm{H}(\mathrm{aq})}{\longrightarrow} \mathrm{Y} \stackrel{[0]}{\rightarrow} \mathrm{Z}\)
(ii) \(\mathrm{Z}+2,4-\mathrm{DNPH} \rightarrow\) Yellow precipitate
(iii) \(\mathrm{Z}+\) Fehling solution \(\rightarrow\) No change
(iv) \(X\) is the isomer of \(C_{4} H_{9} B r\)
āĻāĻĒāĻ°ā§āĻ° āĻ¤āĻĨā§āĻ¯āĻā§āĻ˛ā§ āĻŦā§āĻ¯āĻŦāĻšāĻžāĻ° āĻāĻ°ā§ āĻāĻĒāĻ¯ā§āĻā§āĻ¤ āĻ¯ā§āĻā§āĻ¤āĻŋāĻ¸āĻš X, Y āĻāĻŦāĻ Z āĻāĻ° āĻāĻžāĻ āĻ¨āĻŋāĻ āĻ¸āĻāĻā§āĻ¤ āĻ¨āĻŋāĻ°ā§āĻŖāĻ¯āĻŧ āĻāĻ°āĨ¤
(ii) āĻ¨āĻ āĻļāĻ°ā§āĻ¤āĻŽāĻ¤ā§ z āĻāĻāĻāĻŋ āĻāĻžāĻ°ā§āĻŦāĻ¨āĻŋāĻ˛ āĻ¯ā§āĻ āĻāĻŦāĻ (iii) āĻ¨āĻ āĻļāĻ°ā§āĻ¤ āĻšāĻ¤ā§ āĻŦā§āĻāĻž āĻ¯āĻžā§ āĻ¤āĻž āĻāĻŋāĻā§āĻ¨āĨ¤ (iv) āĻ¨āĻ āĻļāĻ°ā§āĻ¤āĻŽāĻ¤ā§ \(X\) āĻšāĻ˛ā§ \(C_{4} H_{9} B r\) āĻāĻ° āĻ¸āĻŽāĻžāĻŖā§ āĻĒāĻ°āĻŦāĻ°ā§āĻ¤ā§āĻ¤ā§ āĻ¯āĻž āĻšāĻ¤ā§ āĻ
ā§āĻ¯āĻžāĻ˛āĻā§āĻšāĻ˛ Y āĻāĻŦāĻ āĻāĻŋāĻā§āĻ¨ Z āĻā§āĻĒāĻ¨ā§āĻ¨ āĻšā§ āĻ¤āĻžāĻ X āĻ Br āĻ
āĻŦāĻļā§āĻ¯āĻ 2 āĻ¨ā§ āĻāĻžāĻ°ā§āĻŦāĻ¨ā§ āĻāĻā§āĨ¤
X āĻšāĻ˛ā§: \(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CHBr}-\mathrm{CH}_{3}\)
Y āĻšāĻ˛ā§:\(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}\)
Z āĻšāĻ˛ā§:\(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{CH}_{3}\)
(āĻ) āĻ˛āĻŦāĻ¨ āĻ¸ā§āĻ¤ā§ āĻ āĻ¤āĻĄāĻŧāĻŋā§āĻĻā§āĻŦāĻžāĻ° \(\left[(\mathrm{i}) \mathrm{Fe}^{2+}(\mathrm{aq}) / \mathrm{Fe}(\mathrm{s})=-0.44 \mathrm{~V} \text { āĻāĻŦāĻ (ii) } \mathrm{Cu}^{2+}(\mathrm{aq}) / \mathrm{Cu}(\mathrm{s})=0.34 \mathrm{~V}\right]\) āĻŦā§āĻ¯āĻŦāĻšāĻžāĻ° āĻāĻ°ā§, āĻ¤āĻĄāĻŧāĻŋā§ āĻā§āĻˇāĻāĻŋāĻ° āĻāĻŋāĻ¤ā§āĻ° āĻ āĻā§āĻāĻ¨ āĻāĻ° āĻāĻŦāĻ āĻā§āĻˇā§āĻ° emf āĻ¨āĻŋāĻ°ā§āĻŖāĻ¯āĻŧ āĻāĻ°āĨ¤
āĻā§āĻˇ āĻŦāĻŋāĻā§āĻ°āĻŋā§āĻž: \(F e / F e^{2+} \| C u^{2+} / C u\)
\(E_{\text {cell }}^{o}=E_{F e}^{o} / F e^{2+}+E_{C u^{2+}}^{o} / C u\)
\(=0.44+0.34\)
\(=0.78 \mathrm{~V}\)
ā§ŽāĨ¤ āĻāĻĨāĻžāĻ¨āĻ¯āĻŧāĻŋāĻ āĻāĻ¸āĻŋāĻĄā§āĻ° āĻāĻ˛ā§āĻ¯āĻŧ āĻĻā§āĻ°āĻŦāĻŖā§āĻ° āĻŦāĻŋā§ā§āĻāĻ¨ āĻ¸āĻžāĻŽā§āĻ¯āĻŦāĻ¸ā§āĻĨāĻž āĻĻā§āĻāĻžāĻ āĻāĻŦāĻ āĻāĻ° \(\mathrm{K}_{\mathrm{a}}\) āĻ¸āĻāĻā§āĻāĻžāĻ¯āĻŧāĻŋāĻ¤ āĻāĻ°āĨ¤ āĻā§āĻ¨ āĻļāĻ°ā§āĻ¤ā§,
\(\mathrm{pK}_{\mathrm{a}}=\mathrm{pH}\) āĻšāĻŦā§, āĻĒā§āĻ°ā§ā§āĻāĻ¨ā§āĻ¯āĻŧ āĻ¸āĻŽā§āĻāĻ°āĻŖāĻ¸āĻš āĻŦā§āĻ¯āĻžāĻā§āĻ¯āĻž āĻāĻ°āĨ¤
\(\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}\)
\(K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\)
\(p H=p k_{a}+\log \frac{[\text { Salt }]}{[\text { Acid }]}\)
\(p H=p k_{a}\) āĻšāĻŦā§ āĻ¯āĻĻāĻŋ,
\(\log \frac{[\text { Salt }]}{[\text { Acid }]}=0\)
āĻŦāĻž, \(\log \frac{[\text { Salt }]}{[\text { Acid }]}=\log 1\)
āĻŦāĻž, \(\frac{[\text { Salt }]}{[\text { Acid }]}=1\)
āĻŦāĻž, \([\) Salt \(]=[\) Acid \(]\)
āĻāĻā§āĻāĻ¤āĻ° āĻāĻŖāĻŋāĻ¤
-
\(2 x=y^{2}+8 y+22\) āĻĒāĻ°āĻžāĻŦā§āĻ¤ā§āĻ¤ā§āĻ° āĻļā§āĻ°ā§āĻˇāĻŦāĻŋāĻ¨ā§āĻĻā§āĻ° āĻ¸ā§āĻĨāĻžāĻ¨āĻžāĻāĻ āĻšāĻŦā§-
- (3,-4)
- (-3, 4)
- (-3, -4)
- (3, 4)
Ans. (3,-4)
- \(\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin ^{2} 2 x}\) āĻāĻ° āĻŽāĻžāĻ¨ āĻšāĻŦā§-
- \(\frac{1}{4}\)
- \(\frac{1}{8}\)
- \(\frac{1}{2}\)
- 1
Ans. \(\frac{1}{8}\)
- \(\int_{0}^{2}|x-1| d x=?\)
- 0
- 1
- 2
- \(\frac{1}{2}\)
Ans. 1
-
āĻ¤āĻŋāĻ¨āĻāĻŋ āĻāĻā§āĻāĻž āĻāĻāĻŦāĻžāĻ° āĻ¨āĻŋāĻā§āĻˇā§āĻĒ āĻāĻ°āĻž āĻšāĻ˛ā§ āĻ¤āĻŋāĻ¨āĻāĻŋāĻ¤ā§āĻ āĻāĻāĻ āĻ¸āĻāĻā§āĻ¯āĻž āĻĒāĻžāĻā§āĻžāĻ° āĻ¸āĻŽā§āĻāĻžāĻŦāĻ¨āĻž āĻāĻ¤?
- \(\frac{1}{18}\)
- \(\frac{1}{6}\)
- \(\frac{1}{216}\)
- \(\frac{1}{36}\)
Ans. \(\frac{1}{36}\)
- \(\frac{d}{d x}\left(\cos ^{2}(\ln x)\right)=?\)
- \(-\frac{\sin (2 \ln x)}{2}\)
- \(-\frac{2 \cos (\ln x)}{x}\)
- \(-\frac{\sin (2 \ln x)}{x}\)
- \(-2 x \cos (\ln x) \sin (\ln x)\)
Ans. \(-\frac{\sin (2 \ln x)}{x}\)
- \(f(x)=\sqrt{3-\sqrt{x-2}}\) āĻĢāĻžāĻāĻļāĻ¨āĻāĻŋāĻ° āĻĄā§āĻŽā§āĻ¨ āĻāĻ¤?
- \(x \leq 3\)
- \(x \geq 2\)
- \(2 \leq x \leq 11\)
- \(2 \leq x \leq 3\)
Ans. \(2 \leq x \leq 11\)
- \(\operatorname{cosec} \theta+\cot \theta=\sqrt{3}(0<\theta<\pi)\) āĻšāĻ˛ā§ \(\theta\) āĻāĻ° āĻŽāĻžāĻ¨ āĻšāĻŦā§-
- \(\frac{\pi}{2}\)
- \(\frac{\pi}{3}\)
- \(\frac{\pi}{4}\)
- \(\frac{\pi}{6}\)
Ans. \(\frac{\pi}{3}\)
- āĻ¯āĻĻāĻŋ A, B, C āĻŽā§āĻ¯āĻžāĻā§āĻ°āĻŋāĻā§āĻ¸ āĻ¤āĻŋāĻ¨āĻāĻŋāĻ° āĻāĻāĻžāĻ° āĻ¯āĻĨāĻžāĻā§āĻ°āĻŽā§ \(4 \times 5,5 \times 4\) āĻāĻŦāĻ \(4 \times 2\) āĻšā§, āĻ¤āĻŦā§ \(\left(A^{T}+B\right) C\) āĻŽā§āĻ¯āĻžāĻā§āĻ°āĻŋāĻā§āĻ¸āĻāĻŋāĻ° āĻāĻāĻžāĻ° āĻāĻŋ?
- \(4 \times 2\)
- \(5 \times 4\)
- \(2 \times 5\)
- \(5 \times 2\)
Ans. \(5 \times 2\)
- āĻĒā§āĻ˛āĻžāĻ° āĻ¸ā§āĻĨāĻžāĻ¨āĻžāĻāĻā§ \(r^{2}-2 r \sin \theta=3\) āĻāĻāĻāĻŋ āĻŦā§āĻ¤ā§āĻ¤ā§āĻ° āĻ¸āĻŽā§āĻāĻ°āĻŖāĨ¤ āĻŦā§āĻ¤ā§āĻ¤āĻāĻŋāĻ° āĻŦā§āĻ¯āĻžāĻ¸āĻžāĻ°ā§āĻ§ āĻšāĻŦā§-
- 2
- 3
- 4
- 6
Ans. 2
- 3N āĻ 2N āĻŽāĻžāĻ¨ā§āĻ° āĻĻā§āĻāĻāĻŋ āĻŦāĻ˛ā§āĻ° āĻ˛āĻĻā§āĻŦāĻŋ R āĨ¤ āĻĒā§āĻ°āĻĨāĻŽ āĻŦāĻ˛ā§āĻ° āĻŽāĻžāĻ¨ āĻĻā§āĻŦāĻŋāĻā§āĻ¨ āĻāĻ°āĻ˛ā§ āĻ˛āĻĻā§āĻŦāĻŋāĻ° āĻŽāĻžāĻ¨āĻ āĻĻā§āĻŦāĻŋāĻā§āĻ¨ āĻšā§āĨ¤ āĻŦāĻ˛āĻĻā§āĻŦā§ā§āĻ° āĻŽāĻ§ā§āĻ¯āĻŦāĻ°ā§āĻ¤ā§ āĻā§āĻŖā§āĻ° āĻŽāĻžāĻ¨ āĻšāĻŦā§-
- \(30^{\circ}\)
- \(120^{\circ}\)
- \(65^{\circ}\)
- \(45^{\circ}\)
Ans. \(120^{\circ}\)
- 2u āĻāĻĻāĻŋāĻŦā§āĻ āĻāĻŦāĻ āĻ
āĻ¨ā§āĻā§āĻŽāĻŋāĻ° āĻ¸āĻžāĻĨā§ āĻ˛āĻŽā§āĻŦāĻāĻžāĻŦā§ āĻĒā§āĻ°āĻā§āĻˇāĻŋāĻĒā§āĻ¤ āĻŦāĻ¸ā§āĻ¤ā§āĻ° āĻ¸āĻ°ā§āĻŦā§āĻŦā§āĻā§āĻ āĻāĻā§āĻāĻ¤āĻž āĻšāĻŦā§-
- \(\frac{u^{2}}{2 g}\)
- \(\frac{2 u^{2}}{g}\)
- \(\frac{u^{2}}{2 g} \sin \alpha\)
- \(\frac{u^{2}}{2 g} \cos \alpha\)
Ans. \(\frac{2 u^{2}}{g}\)
-
āĻ¯āĻĻāĻŋ \(y=k x(2 x+\sqrt{3})\) āĻŦāĻā§āĻ°āĻ°ā§āĻāĻžāĻ° āĻŽā§āĻ˛āĻŦāĻŋāĻ¨ā§āĻĻā§āĻ¤ā§ āĻ¸ā§āĻĒāĻ°ā§āĻļāĻāĻāĻŋ \(X\) āĻ
āĻā§āĻˇā§āĻ° āĻ¸āĻžāĻĨā§ \(30^{\circ}\) āĻā§āĻŖ āĻāĻ°ā§ āĻ¤āĻžāĻšāĻ˛ā§ K-āĻāĻ° āĻŽāĻžāĻ¨ āĻāĻ¤ āĻšāĻŦā§?
- \(\frac{1}{3}\)
- \(\sqrt{3}\)
- \(\frac{1}{\sqrt{3}}\)
- \(\frac{1}{2}\)
Ans. \(\frac{1}{3}\)
-
\(x=a \cos \theta+b \sin \theta, y=a \sin \theta-b \cos \theta\) āĻā§āĻ¨ āĻā§āĻ¨āĻŋāĻā§āĻ° āĻ¸āĻŽā§āĻāĻ°āĻŖ?
- ellipse
- parabola
- circle
- hyperbola
Ans. circle
- \(x^{2}-2 x+1=0\) āĻ¸āĻŽā§āĻāĻ°āĻŖāĻāĻŋāĻ° āĻŽā§āĻ˛āĻĻā§āĻŦā§ā§āĻ° āĻ¤ā§āĻ°āĻŋāĻāĻžāĻ¤ āĻāĻ° āĻ¸āĻŽāĻˇā§āĻāĻŋ āĻšāĻ˛ā§-
- -3
- 3
- -2
- 2
Ans. 2
- \((1+x)^{7}(1-x)^{8}\) āĻāĻ° āĻŦāĻŋāĻ¸ā§āĻ¤ā§āĻ¤āĻŋāĻ¤ā§ \(x^{7}\) āĻāĻ° āĻ¸āĻšāĻ āĻšāĻ˛ā§-
- 15
- 30
- 25
- 35
Ans. 35
āĻāĻŖāĻŋāĻ¤ (Mathematics) āĻ˛āĻŋāĻāĻŋāĻ¤ āĻ āĻāĻļ
ā§¯ā§ˇ \(x^{3}-3 x^{2}+7 x-5=0\) āĻ¸āĻŽā§āĻāĻ°āĻŖā§āĻ° āĻāĻāĻāĻŋ āĻŽā§āĻ˛ \((1+2 i)\) āĻšāĻ˛ā§ āĻ āĻ¨ā§āĻ¯ āĻŽā§āĻ˛āĻā§āĻ˛ā§ āĻ¨āĻŋāĻ°ā§āĻŖāĻ¯āĻŧ āĻāĻ°āĨ¤
āĻāĻāĻāĻŋ āĻŽā§āĻ˛ \((1+2 i)\) āĻšāĻ˛ā§ āĻ
āĻĒāĻ° āĻŽā§āĻ˛ \((1-2 i)\)
\((1+2 i)\) āĻ \((1-2 i)\) āĻŽā§āĻ˛āĻŦāĻŋāĻļāĻŋāĻˇā§āĻ āĻ¸āĻŽā§āĻāĻ°āĻŖ,
\(x^2-2x+5=0\)
āĻĒā§āĻ°āĻĻāĻ¤ā§āĻ¤ āĻ¸āĻŽā§āĻāĻ°āĻŖ,
\(x^{3}-3 x^{2}+7 x-5=0\)
āĻŦāĻž, \(x^{3}-2 x^{2}+5x-x^{2}+2 x-5=0\)
āĻŦāĻž, \(x(x^2-2x+5)-1(x^2-2x+5))=0\)
āĻŦāĻž, \((x^2-2x+5)(x-1)=0\)
āĻŦāĻž, \(x=1,1+2 i,1-2 i\)
ā§§ā§Ļā§ˇ \(y=x^{2}\) āĻāĻŦāĻ \(x=y^{2}\) āĻĻā§āĻŦāĻžāĻ°āĻž āĻ¸ā§āĻŽāĻžāĻŦāĻĻā§āĻ§ āĻā§āĻˇā§āĻ¤ā§āĻ°ā§āĻ° āĻā§āĻˇā§āĻ¤ā§āĻ°āĻĢāĻ˛ āĻ¨āĻŋāĻ°ā§āĻŖāĻ¯āĻŧ āĻāĻ°āĨ¤
\(y=x^{2}\) āĻāĻŦāĻ \(x=y^{2}\) āĻšāĻ¤ā§ āĻĒāĻžāĻ,
\(x^4=x\)
āĻŦāĻž, \(x^4-x=0\)
āĻŦāĻž, \(x(x^3-1)=0\)
āĻŦāĻž, \(x=0,1\)
āĻā§āĻˇā§āĻ¤ā§āĻ°āĻĢāĻ˛ \(=\int\left(y_{1}-y_{2}\right) d x\)
\(=\int_{0}^{1}\left(x^{\frac{1}{2}}-x^{2}\right) d x\)
\(=\left[\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{x^{2+1}}{2+1}\right]_{0}^{1}\)
\(=\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{3}}{3}\right]_{0}^{1}\)
\(=\frac{2}{3}-\frac{1}{3}\)
\(=\frac{1}{3}\) āĻŦāĻ°ā§āĻ āĻāĻāĻ
ā§§ā§§āĨ¤ āĻĻā§āĻāĻžāĻ āĻ¯ā§, \(\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\)
\(\tan ^{-1} x=A \quad \therefore x=\tan A\)
\(\tan ^{-1} y=B \quad \therefore y=\tan B\)
\(\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}\)
\(=\frac{x+y}{1-x y}\)
\(A+B=\tan ^{-1} \frac{x+y}{1-x y}\)
\(\therefore \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\)
ā§§ā§¨āĨ¤ \(5 x_{1}+10 x_{2} \leq 50, x_{1}+x_{2} \geq 1, x_{2} \leq 4, x_{1} \geq 0, x_{2} \geq 0\) āĻļāĻ°ā§āĻ¤āĻžāĻŦāĻ˛ā§ āĻ¸āĻžāĻĒā§āĻā§āĻˇā§ \(2 x_{1}+7 x_{2}\) āĻāĻ° āĻ˛āĻāĻŋāĻˇā§āĻ āĻŽāĻžāĻ¨ āĻŦā§āĻ° āĻāĻ°āĨ¤
āĻ
āĻ¸āĻŽāĻ¤āĻžāĻ° āĻ
āĻ¨ā§āĻ°ā§āĻĒ āĻ¸āĻŽā§āĻāĻ°āĻŖ,
\(\frac{x_{1}}{10}+\frac{x_{2}}{5}=1\)
\(\frac{x_{1}}{1}+\frac{x_{2}}{1}=1\)
\(x_{2}=4, x_{1}=0, x_{2}=0\)
\(Z_{A}=2(\min )\) Ans
\(Z_{B}=20\)
\(Z_{C}=32\)
\(Z_{D}=28\)
\(Z_{E}=7\)
āĻā§āĻŦāĻŦāĻŋāĻā§āĻāĻžāĻ¨
- āĻĻā§āĻŦā§āĻ¤ āĻĒā§āĻ°āĻā§āĻāĻ¨ā§āĻ¨ āĻāĻĒāĻŋāĻ¸ā§āĻāĻžāĻ¸āĻŋāĻ¸ āĻāĻ° āĻ
āĻ¨ā§āĻĒāĻžāĻ¤ āĻšāĻ˛ā§-
- 3 : 1
- 2 : 1
- 13 : 3
- 9 : 7
Ans. āĻ¸āĻžāĻāĻāĻžāĻ¸
- āĻ¨āĻŋāĻā§āĻ° āĻā§āĻ¨āĻāĻŋāĻ¤ā§ āĻā§āĻ°āĻžāĻ˛ā§ā§āĻĄ āĻŽā§āĻ˛ āĻĒāĻžāĻā§āĻž āĻ¯āĻžā§?
- Pinus
- Cycas
- Hibiscus
- Ficus
Ans. ā§¯:ā§
- āĻāĻ˛āĻžāĻā§āĻŽāĻŋāĻ° āĻāĻĻā§āĻāĻŋāĻĻ āĻā§āĻ¨āĻāĻŋ?
- Barringtonia acutangula
- Tectona grandis
- Shorea robusta
- Caissia fistula
Ans. Barringtonia acutangula
- āĻ¨āĻŋāĻā§āĻ° āĻā§āĻ¨ āĻāĻ¨ā§āĻāĻŋāĻŦāĻĄāĻŋ āĻŦā§āĻā§āĻ° āĻĻā§āĻ§ā§āĻ° āĻŽāĻžāĻ§ā§āĻ¯āĻŽā§ āĻĒā§āĻ°āĻŦāĻžāĻšāĻŋāĻ¤ āĻšāĻ¯āĻŧ?
- IgA
- IgG
- IgM
- IgE
Ans. IgA
- āĻĒāĻ¤āĻā§āĻā§āĻ° āĻ¸āĻŽā§āĻĒā§āĻ°ā§āĻŖ āĻ°ā§āĻĒāĻžāĻ¨ā§āĻ¤āĻ° āĻ¨āĻŋāĻŽā§āĻ¨āĻ˛āĻŋāĻāĻŋāĻ¤ āĻā§āĻ¨ āĻ§āĻžāĻĒāĻā§āĻ˛ā§ āĻ¨āĻŋāĻ¯āĻŧā§ āĻāĻ āĻŋāĻ¤?
- āĻĄāĻŋāĻŽ-āĻ¨āĻŋāĻŽā§āĻĢ-āĻĒā§āĻ°ā§āĻŖāĻžāĻā§āĻ-āĻĒāĻ¤āĻā§āĻ
- āĻĄāĻŋāĻŽ-āĻ˛āĻžāĻ°ā§āĻāĻž-āĻĒāĻŋāĻāĻĒāĻž-āĻĒā§āĻ°ā§āĻŖāĻžāĻā§āĻ-āĻĒāĻ¤āĻā§āĻ
- āĻĄāĻŋāĻŽ-āĻ˛āĻžāĻ°ā§āĻāĻž-āĻĒā§āĻ°ā§āĻŖāĻžāĻā§āĻ-āĻĒāĻ¤āĻā§āĻ
- āĻĄāĻŋāĻŽ-āĻĒāĻŋāĻāĻĒāĻž-āĻ˛āĻžāĻ°ā§āĻāĻž-āĻĒā§āĻ°ā§āĻŖāĻžāĻā§āĻ-āĻĒāĻ¤āĻā§āĻ
Ans. āĻĒā§āĻ°ā§āĻŖāĻžāĻā§āĻ āĻĒāĻ¤āĻā§āĻ
- āĻŽāĻžāĻ¨āĻŦāĻĻā§āĻšā§ āĻ¸ā§āĻā§āĻŽ āĻā§āĻˇ āĻā§āĻĨāĻžāĻ¯āĻŧ āĻĒāĻžāĻāĻ¯āĻŧāĻž āĻ¯āĻžāĻ¯āĻŧ?
- āĻ āĻā§āĻ¨ā§āĻ¯āĻžāĻļāĻ¯āĻŧā§
- āĻ¯āĻā§āĻ¤ā§
- āĻ āĻ¸ā§āĻĨāĻŋāĻŽāĻā§āĻāĻžāĻ¯āĻŧ
- āĻšā§ā§āĻĒāĻŋāĻ¨ā§āĻĄā§
Ans. āĻ āĻ¸ā§āĻĨāĻŋāĻŽāĻā§āĻāĻžāĻ¯āĻŧ
- āĻŽāĻžāĻ¨āĻŦāĻĻā§āĻšā§ āĻāĻāĻŋāĻĻā§āĻļā§āĻ¯āĻŧ āĻ
āĻā§āĻāĻ˛ā§ āĻāĻļā§āĻ°ā§āĻāĻžāĻ° āĻ¸āĻāĻā§āĻ¯āĻž?
- ā§Ē āĻāĻŋ
- ā§ āĻāĻŋ
- ā§§ā§¨ āĻāĻŋ
- ā§Ģ āĻāĻŋ
Ans. ā§ĢāĻāĻŋ
- āĻā§āĻ¯āĻžāĻĒā§āĻāĻž āĻā§āĻŽāĻŋāĻ° āĻŦā§āĻā§āĻāĻžāĻ¨āĻŋāĻ āĻ¨āĻžāĻŽ āĻāĻŋ?
- Faciola hepatica
- Loa loa
- Ascaris lumbricoides
- None of them
Ans. Faciola hepatica
- āĻŽā§āĻ¯āĻžāĻ¨ā§āĻāĻ˛ āĻā§āĻ¨ āĻĒāĻ°ā§āĻŦā§āĻ° āĻŦā§āĻļāĻŋāĻˇā§āĻ?
- Arthropoda
- Mollusca
- Annelida
- Echinodermata
Ans. Mollusca
- āĻā§āĻ¨ āĻŦā§āĻ¯āĻžāĻā§āĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻ¯āĻŧ āĻāĻāĻāĻŋ āĻŽāĻžāĻ¤ā§āĻ° āĻĢā§āĻ˛āĻžāĻā§āĻ˛āĻž āĻĨāĻžāĻā§?
- Vibrio cholerae
- Spirillum minus
- Pseudomonas fluorescens
- Bacillus subtilise
Ans. Vibrio cholerae
- āĻāĻĻā§āĻāĻŋāĻĻā§āĻ° āĻ°ā§āĻŽ āĻ
āĻĨāĻŦāĻž āĻā§āĻ°āĻžāĻāĻā§āĻŽ āĻā§āĻ¨āĻāĻŋāĻ° āĻ
āĻāĻļ?
- āĻ āĻ§āĻāĻ¤ā§āĻŦāĻ
- āĻāĻ°ā§āĻā§āĻā§āĻ¸
- āĻ¤ā§āĻŦāĻ
- āĻ āĻ¨ā§āĻ¤āĻāĻ¤ā§āĻŦāĻ
Ans. āĻ¤ā§āĻŦāĻ
- āĻ¨āĻŋāĻā§āĻ° āĻā§āĻ¨āĻāĻŋāĻ¤ā§ āĻāĻāĻŋāĻ¨āĻŋāĻāĻŋ āĻāĻŦāĻ āĻšā§āĻāĻžāĻ°ā§āĻ¸āĻŋāĻ¸ā§āĻ āĻĒāĻžāĻāĻ¯āĻŧāĻž āĻ¯āĻžāĻ¯āĻŧ?
- Escherichia
- Nostoc
- Zygnema
- Chlorella
Ans. UGA
- āĻĒā§āĻ°ā§āĻĢā§āĻ-ā§§ āĻāĻ° āĻā§āĻ¨ āĻĒāĻ°ā§āĻ¯āĻžāĻ¯āĻŧā§ āĻāĻžāĻ¯āĻŧāĻžāĻāĻŽāĻž āĻ¸ā§āĻˇā§āĻāĻŋ āĻšāĻ¯āĻŧ?
- āĻ˛ā§āĻĒā§āĻā§āĻāĻŋāĻ¨
- āĻāĻžāĻāĻā§āĻāĻŋāĻ¨
- āĻĄāĻŋāĻĒā§āĻ˛ā§āĻāĻŋāĻ¨
- āĻĒā§āĻ¯āĻžāĻāĻžāĻāĻāĻŋāĻ¨
Ans. āĻĒā§āĻ¯āĻžāĻāĻžāĻāĻāĻŋāĻ¨
- āĻŽāĻžāĻ¨āĻŦāĻĻā§āĻšā§ āĻ°āĻā§āĻ¤ā§āĻ° āĻĒā§āĻ˛āĻžāĻāĻŽāĻžāĻ° āĻ¸ā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ pH āĻāĻ¤?
- 7.0
- 7.6
- 7.8
- 7.4
Ans. 7.4
- āĻā§āĻ¨ āĻā§āĻĄāĻ¨āĻāĻŋ āĻā§āĻ¨ā§ āĻ
ā§āĻ¯āĻžāĻŽāĻžāĻāĻ¨ā§ āĻ
ā§āĻ¯āĻžāĻ¸āĻŋāĻĄ āĻ¨āĻŋāĻ°ā§āĻĻā§āĻļ āĻāĻ°ā§ āĻ¨āĻž?
- CCU
- ACU
- UGA
- AAG
Ans. āĻĒā§āĻā§āĻā§āĻā§āĻ¤
āĻā§āĻŦāĻŦāĻŋāĻā§āĻāĻžāĻ¨ (Biology) āĻ˛āĻŋāĻāĻŋāĻ¤ āĻ āĻāĻļ
ā§§ā§ŠāĨ¤ DNA āĻĒā§āĻ°āĻ¤āĻŋāĻ˛āĻŋāĻĒāĻ¨ āĻŦāĻ˛āĻ¤ā§ āĻā§ āĻŦā§āĻ? DNA āĻĒā§āĻ°āĻ¤āĻŋāĻ˛āĻŋāĻĒāĻ¨ā§āĻ° āĻāĻ¨ā§āĻ¯ āĻĒā§āĻ°ā§ā§āĻāĻ¨ā§āĻ¯āĻŧ āĻāĻžāĻ°āĻāĻŋ āĻāĻĒāĻāĻ°āĻŖā§āĻ° āĻ¨āĻžāĻŽ āĻ˛āĻŋāĻāĨ¤
āĻā§āĻ°āĻžāĻ¨ā§āĻ¸āĻā§āĻ°āĻŋāĻĒāĻļāĻ¨: RNA āĻĒāĻ˛āĻŋāĻŽāĻžāĻ°ā§āĻ āĻāĻ¨āĻāĻžāĻāĻŽ āĻĻā§āĻŦāĻžāĻ°āĻž DNA āĻŦā§āĻ¸ āĻ¸āĻŋāĻā§āĻ¯āĻŧā§āĻ¨ā§āĻ¸ āĻāĻĒāĻŋ āĻāĻ°ā§ mRNA āĻ¸āĻāĻļā§āĻ˛ā§āĻˇāĻŖ āĻĒā§āĻ°āĻā§āĻ°āĻŋāĻ¯āĻŧāĻž āĻšāĻ˛āĻžā§ āĻā§āĻ°āĻžāĻ¨ā§āĻ¸āĻā§āĻ°āĻŋāĻĒāĻļāĻ¨āĨ¤
āĻā§āĻ°āĻžāĻ¨ā§āĻ¸āĻā§āĻ°āĻŋāĻĒāĻļāĻ¨ āĻĒā§āĻ°āĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻ° āĻāĻ¨ā§āĻ¯ āĻ¯āĻž āĻĒā§āĻ°āĻ¯āĻŧāĻžā§āĻāĻ¨-
- DNA āĻāĻžāĻāĻ (template)
- RNA-āĻĒāĻ˛āĻŋāĻŽāĻžāĻ°ā§āĻ āĻāĻ¨āĻāĻžāĻāĻŽ āĻ¯āĻž āĻ¤āĻŋāĻ¨ āĻĒā§āĻ°āĻāĻžāĻ° āĻšāĻ¤ā§ āĻĒāĻžāĻ°ā§āĨ¤
- āĻŽā§āĻā§āĻ¤ āĻ°āĻžāĻāĻŦāĻžā§āĻ¨āĻŋāĻāĻā§āĻ˛āĻŋāĻ¯āĻŧāĻžā§āĻāĻžāĻāĻĄ āĻā§āĻ°āĻžāĻāĻĢāĻ¸āĻĢā§āĻ (ATP, GTP, CTP āĻāĻŦāĻ UTP)
- āĻ°āĻžāĻ¸āĻžāĻ¯āĻŧāĻ¨āĻŋāĻ āĻļāĻā§āĻ¤āĻŋ, āĻā§āĻ°āĻžāĻāĻĢāĻ¸āĻĢā§āĻ āĻā§āĻā§āĻā§ āĻ¨āĻŋāĻāĻā§āĻ˛āĻŋāĻ¯āĻŧāĻžā§āĻāĻžāĻāĻĄ āĻāĻŦāĻ āĻĒāĻžāĻāĻ°āĻžā§āĻĢāĻ¸āĻĢā§āĻ āĻ¸ā§āĻˇā§āĻāĻŋāĻāĻžāĻ˛ā§ āĻŽā§āĻā§āĻ¤ āĻšāĻ¯āĻŧāĨ¤
āĻĒāĻžāĻāĻ°āĻžā§āĻĢāĻ¸āĻĢā§āĻ āĻā§āĻā§āĻā§ āĻĻā§āĻ āĻāĻ¯āĻŧāĻ¨ āĻĢāĻ¸āĻĢā§āĻ āĻ¤ā§āĻ°āĻŋ āĻāĻžāĻ˛ā§āĻ āĻāĻŋāĻā§ āĻ āĻ¤āĻŋāĻ°āĻŋāĻā§āĻ¤ āĻļāĻā§āĻ¤āĻŋ āĻĒāĻžāĻāĻ¯āĻŧāĻž āĻ¯āĻžāĻ¯āĻŧāĨ¤ - āĻāĻŋāĻā§ āĻ¸āĻšāĻ¯āĻžā§āĻā§ āĻĒā§āĻ°āĻžā§āĻāĻŋāĻ¨āĨ¤
ā§§ā§ĒāĨ¤ āĻāĻāĻŦā§āĻāĻĒāĻ¤ā§āĻ°ā§ āĻāĻĻā§āĻāĻŋāĻĻā§āĻ° āĻāĻžāĻŖā§āĻĄā§āĻ° āĻ āĻ¨ā§āĻ¤āĻ°ā§āĻāĻ āĻ¨ā§āĻ° āĻĒāĻžāĻāĻāĻāĻŋ āĻļāĻ¨āĻžāĻā§āĻ¤āĻāĻžāĻ°ā§ āĻŦā§āĻļāĻŋāĻˇā§āĻā§āĻ¯ āĻ˛āĻŋāĻāĨ¤
āĻāĻāĻŦā§āĻāĻĒāĻ¤ā§āĻ°ā§ āĻāĻĻā§āĻāĻŋāĻĻā§āĻ° āĻāĻžāĻŖā§āĻĄā§āĻ° āĻ āĻ¨ā§āĻ¤āĻ°ā§āĻāĻ āĻ¨ā§āĻ° āĻļāĻ¨āĻžāĻā§āĻ¤āĻāĻžāĻ°ā§ āĻŦā§āĻļāĻŋāĻˇā§āĻā§āĻ¯:
- āĻ¸āĻžāĻ§āĻžāĻ°āĻŖāĻ¤ āĻāĻžāĻ¨ā§āĻĄāĻ°āĻžā§āĻŽ āĻ āĻ¨ā§āĻĒāĻ¸ā§āĻĨāĻŋāĻ¤āĨ¤
- āĻŦāĻšāĻŋāĻāĻ¤ā§āĻŦāĻā§ āĻāĻŋāĻāĻāĻŋāĻāĻ˛ āĻāĻĒāĻ¸ā§āĻĨāĻŋāĻ¤āĨ¤
- āĻ āĻ§āĻāĻ¤ā§āĻŦāĻ āĻāĻā§ āĻāĻŦāĻ āĻ¸āĻžāĻ§āĻžāĻ°āĻŖāĻ¤ āĻĢā§āĻ˛ā§āĻ°ā§āĻ¨āĻāĻžāĻāĻŽāĻž āĻāĻŋāĻ¸ā§āĻ¯ā§ āĻĻāĻŋāĻ¯āĻŧā§ āĻāĻ āĻŋāĻ¤āĨ¤
- āĻāĻžāĻ¸ā§āĻā§āĻ˛āĻžāĻ° āĻŦāĻžāĻ¨ā§āĻĄāĻ˛āĻā§āĻ˛āĻžā§ āĻā§āĻ°āĻžāĻāĻ¨ā§āĻĄ āĻāĻŋāĻ¸ā§āĻ¯ā§āĻ¤ā§ āĻŦāĻŋāĻā§āĻˇāĻŋāĻĒā§āĻ¤āĻāĻžāĻŦā§ āĻāĻĄāĻŧāĻžāĻ¨āĻžā§āĨ¤
- āĻŽā§āĻāĻžāĻāĻžāĻāĻ˛ā§āĻŽ āĻĒāĻ°āĻŋāĻ§āĻŋāĻ° āĻĻāĻŋāĻā§ āĻāĻŦāĻ āĻĒā§āĻ°āĻžā§āĻā§āĻāĻžāĻāĻ˛ā§āĻŽ āĻā§āĻ¨ā§āĻĻā§āĻ°ā§āĻ° āĻĻāĻŋāĻā§ āĻ āĻŦāĻ¸ā§āĻĨāĻŋāĻ¤āĨ¤
- āĻāĻžāĻāĻ˛ā§āĻŽ Y āĻŦāĻž V āĻāĻā§āĻ¤āĻŋāĻŦāĻŋāĻļāĻŋāĻˇā§āĻāĨ¤
- āĻāĻžāĻ¸ā§āĻā§āĻ˛āĻžāĻ° āĻŦāĻžāĻ¨ā§āĻĄāĻ˛ āĻ¸āĻāĻ¯ā§āĻā§āĻ¤, āĻ¸āĻŽāĻĒāĻžāĻ°ā§āĻļā§āĻŦā§āĻ¯āĻŧ āĻ āĻŦāĻĻā§āĻ§ (āĻāĻžāĻāĻ˛ā§āĻŽ āĻ āĻĢā§āĻ˛ā§āĻ¯āĻŧā§āĻŽā§āĻ° āĻŽāĻžāĻā§ āĻā§āĻ¯āĻžāĻŽā§āĻŦāĻŋāĻ¯āĻŧāĻžāĻŽ āĻ¨ā§āĻ)āĨ¤
ā§§ā§Ģā§ˇ Platyhelminthes āĻāĻŦāĻ Nemathelminthes āĻāĻ° āĻĒāĻžāĻāĻāĻāĻŋ āĻĒā§āĻ°āĻ§āĻžāĻ¨ āĻĒāĻžāĻ°ā§āĻĨāĻā§āĻ¯ āĻ˛āĻŋāĻāĨ¤
Platyhelminthes āĻāĻŦāĻ Nemathelminthes āĻāĻ° āĻĒāĻžāĻāĻāĻāĻŋ āĻĒā§āĻ°āĻ§āĻžāĻ¨ āĻĒāĻžāĻ°ā§āĻĨāĻā§āĻ¯:
āĻŦāĻŋāĻˇā§ | Platyhelminthes | Nemathelminthes |
āĻ¸āĻžāĻ§āĻžāĻ°āĻŖ āĻ¨āĻžāĻŽ | āĻā§āĻ¯āĻžāĻĒā§āĻāĻž āĻā§āĻŽāĻŋ | āĻ¸ā§āĻ¤āĻžāĻā§āĻŽāĻŋ āĻŦāĻž āĻāĻžā§āĻ˛āĻā§āĻŽāĻŋ |
āĻ¸āĻāĻāĻ āĻ¨ āĻŽāĻžāĻ¤ā§āĻ°āĻž | āĻāĻŋāĻ¸ā§āĻ¯ā§-āĻ āĻā§āĻ āĻŽāĻžāĻ¤ā§āĻ°āĻž | āĻ āĻā§āĻāĻ¤āĻ¨ā§āĻ¤ā§āĻ° āĻŽāĻžāĻ¤ā§āĻ°āĻž |
āĻ¸āĻŋāĻ˛āĻžā§āĻŽ | āĻ ā§āĻ¯āĻžāĻ¸āĻŋāĻ˛āĻžā§āĻŽā§āĻ | āĻ¸ā§āĻĄāĻžā§āĻ¸āĻŋāĻ˛āĻžā§āĻŽā§āĻ |
āĻ¯ā§āĻ¨ āĻĻā§āĻŦāĻŋāĻ°ā§āĻĒāĻ¤āĻžāĨ¤ | āĻ āĻ¨ā§āĻĒāĻ¸ā§āĻĨāĻŋāĻ¤ | āĻāĻĒāĻ¸ā§āĻĨāĻŋāĻ¤ |
āĻļāĻŋāĻāĻž āĻā§āĻˇ | āĻāĻĒāĻ¸ā§āĻĨāĻŋāĻ¤ | āĻ āĻ¨ā§āĻĒāĻ¸ā§āĻĨāĻŋāĻ¤ |
āĻā§āĻˇāĻ | āĻāĻĒāĻ¸ā§āĻĨāĻŋāĻ¤ | āĻ āĻ¨ā§āĻĒāĻ¸ā§āĻĨāĻŋāĻ¤ |
ā§§ā§ŦāĨ¤ āĻŽāĻžāĻ¨āĻŦāĻĻā§āĻšā§āĻ° āĻ¯ā§ āĻā§āĻ¨ā§ ā§§ā§ĻāĻāĻŋ āĻāĻ°ā§āĻāĻŋāĻāĻž āĻ¸ā§āĻ¨āĻžāĻ¯āĻŧā§āĻ° āĻ¨āĻžāĻŽ āĻ˛āĻŋāĻāĨ¤
ā§§ā§ĻāĻāĻŋ āĻāĻ°āĻžā§āĻāĻŋāĻ āĻ¸ā§āĻ¨āĻžāĻ¯āĻŧā§āĻ° āĻ¨āĻžāĻŽ:
- āĻ āĻ˛āĻĢā§āĻ¯āĻžāĻā§āĻāĻ°āĻŋ āĻŦāĻž āĻā§āĻ°āĻžāĻŖ āĻā§āĻ°āĻšāĻŖāĻāĻžāĻ°ā§ āĻ¸ā§āĻ¨āĻžāĻ¯āĻŧā§āĨ¤
- āĻ āĻĒāĻāĻŋāĻ āĻŦāĻž āĻĻāĻ°ā§āĻļāĻ¨ āĻ¸ā§āĻ¨āĻžāĻ¯āĻŧā§āĨ¤
- āĻ āĻā§āĻ˛āĻžā§āĻŽāĻžā§āĻāĻ°
- āĻā§āĻ°āĻ˛āĻŋāĻ¯āĻŧāĻžāĻ° āĻŦāĻž āĻĒā§āĻ¯āĻžāĻĨā§āĻāĻŋāĻ āĻ¸ā§āĻ¨āĻžāĻ¯āĻŧā§āĨ¤
- āĻā§āĻ°āĻžāĻāĻā§āĻŽāĻŋāĻ¨āĻžāĻ˛
- āĻ ā§āĻ¯āĻžāĻŦāĻĄāĻŧā§āĻ¸ā§āĻ¨ā§āĻ¸āĨ¤
- āĻĢā§āĻ¯āĻžāĻ¸āĻŋāĻ¯āĻŧāĻžāĻ˛āĨ¤
- āĻ āĻĄāĻŋāĻāĻ°āĻŋ āĻŦāĻž āĻā§āĻ¸ā§āĻāĻŋāĻŦā§āĻ˛āĻžā§ āĻāĻāĻ˛āĻŋāĻ¯āĻŧāĻžāĻ° āĻ¸ā§āĻ¨āĻžāĻ¯āĻŧā§āĨ¤ |
- āĻā§āĻ˛āĻ¸āĻžā§āĻĢā§āĻ¯āĻžāĻ°āĻŋāĻā§āĻāĻŋāĻ¯āĻŧāĻžāĻ˛
- āĻā§āĻāĻžāĻ¸ āĻŦāĻž āĻ¨āĻŋāĻāĻŽāĻžā§āĻā§āĻ¯āĻžāĻ¸ā§āĻā§āĻ°āĻŋāĻ āĻŦāĻž āĻā§āĻˇā§āĻ§āĻžāĻ°ā§āĻ¤ āĻ¸ā§āĻ¨āĻžāĻ¯āĻŧā§āĨ¤ |
- āĻ ā§āĻ¯āĻžāĻā§āĻ¸ā§āĻ¸āĻ°āĻŋāĨ¤
- āĻšāĻžāĻāĻĒāĻžā§āĻā§āĻ˛ā§āĻ¸āĻžāĻ˛
āĻŦāĻžāĻāĻ˛āĻž
-
âāĻāĻŋāĻ¤ā§āĻ°āĻŽāĻ¯āĻŧ āĻŦāĻ°ā§āĻŖāĻ¨āĻžāĻ° āĻŦāĻžāĻŖā§â- āĻāĻŦāĻŋ āĻā§āĻĨāĻž āĻĨā§āĻā§ āĻā§āĻĄāĻŧāĻŋāĻ¯āĻŧā§ āĻāĻ¨ā§āĻ¨?
- āĻĒā§āĻ°āĻā§āĻ¤āĻŋāĻ° āĻāĻāĻ¤āĻžāĻ¨ āĻ¸ā§āĻ°ā§āĻ¤ āĻĨā§āĻā§
- āĻā§āĻ°āĻŽāĻ¨ āĻŦā§āĻ¤ā§āĻ¤āĻžāĻ¨ā§āĻ¤ āĻĨā§āĻā§
- āĻŽāĻžāĻ¨āĻˇā§āĻ° āĻā§āĻ°ā§āĻ¤āĻŋ āĻĨā§āĻā§
- āĻāĻŦāĻŋāĻ¤āĻž āĻĨā§āĻā§
Ans. āĻā§āĻ°āĻŽāĻ¨ āĻŦā§āĻ¤ā§āĻ¤āĻžāĻ¨ā§āĻ¤ āĻĨā§āĻā§
- āĻ¸āĻžāĻ˛āĻžāĻŽā§āĻ° āĻšāĻžāĻ¤ āĻĨā§āĻā§ āĻāĻŋāĻ¸ā§āĻ° āĻŽāĻ¤ā§ āĻ
āĻŦāĻŋāĻ¨āĻžāĻļā§ āĻŦāĻ°ā§āĻŖāĻŽāĻžāĻ˛āĻž āĻāĻ°ā§?
- āĻā§āĻˇā§āĻāĻā§ā§āĻžāĻ° āĻŽāĻ¤
- āĻ°āĻā§āĻ¤ā§āĻ° āĻŦā§āĻĻāĻŦā§āĻĻā§āĻ° āĻŽāĻ¤
- āĻŦāĻŋāĻĒā§āĻ˛āĻŦā§āĻ° āĻŽāĻ¤
- āĻ¨āĻā§āĻˇāĻ¤ā§āĻ°ā§āĻ° āĻŽāĻ¤
Ans. āĻ¨āĻā§āĻˇāĻ¤ā§āĻ°ā§āĻ° āĻŽāĻ¤
- āĻ¸ā§āĻĨāĻŋāĻ° āĻļāĻŦā§āĻĻā§āĻ° āĻŦāĻŋāĻĒāĻ°ā§āĻ¤ āĻļāĻŦā§āĻĻ āĻšāĻ˛ā§-
- āĻāĻā§āĻāĻŽ
- āĻā§āĻ˛āĻžāĻšāĻ˛
- āĻāĻā§āĻāĻ°āĻŦ
- āĻ¨āĻŋāĻļā§āĻāĻ˛
Ans. āĻāĻā§āĻāĻŽ
-
āĻŦā§āĻāĻŽ āĻ°ā§āĻā§āĻ¯āĻŧāĻž āĻ¸āĻžāĻāĻžāĻāĻ¯āĻŧāĻžāĻ¤ āĻšā§āĻ¸ā§āĻ¨ āĻ¸āĻā§āĻ¯āĻ¤āĻžāĻ° āĻ¸āĻā§āĻā§ āĻĻāĻžāĻ°āĻŋāĻĻā§āĻ°ā§āĻ¯ āĻŦā§āĻĻā§āĻ§āĻŋāĻ° āĻā§ āĻāĻžāĻ°āĻŖ āĻ¨āĻŋāĻ°ā§āĻĻā§āĻļ āĻāĻ°ā§āĻā§āĻ¨?
- āĻ āĻ˛āĻ¸āĻ¤āĻž
- āĻŦāĻŋāĻ˛āĻžāĻ¸āĻŋāĻ¤āĻž
- āĻ āĻ¸āĻ¤āĻ¤āĻž
- āĻ āĻā§āĻāĻ¤āĻž
Ans. āĻŦāĻŋāĻ˛āĻžāĻ¸āĻŋāĻ¤āĻž
- āĻāĻžāĻā§ āĻ¨āĻāĻ°ā§āĻ˛ āĻāĻ¸āĻ˛āĻžāĻŽā§āĻ° āĻŽāĻ¤ā§, āĻāĻŋāĻ¸ā§āĻ° āĻŽāĻ§ā§āĻ¯ āĻĻāĻŋāĻ¯āĻŧā§ āĻ¸āĻ¤ā§āĻ¯āĻā§ āĻĒāĻžāĻāĻ¯āĻŧāĻž āĻ¯āĻžāĻ¯āĻŧ?
- āĻŽāĻ¨ā§āĻˇā§āĻ¯āĻ¤ā§āĻŦ
- āĻ§āĻ°ā§āĻŽ
- āĻ¸āĻāĻā§āĻ°āĻžāĻŽ
- āĻā§āĻ˛
Ans. āĻā§āĻ˛
- āĻŦā§āĻā§āĻˇ āĻā§āĻŦāĻ˛ āĻŦā§āĻĻā§āĻ§āĻŋāĻ° āĻāĻļāĻžāĻ°āĻž āĻ¨āĻ¯āĻŧ, āĻŽāĻžā§āĻ¤āĻžāĻšā§āĻ° āĻšā§āĻ¸ā§āĻ¨ āĻā§āĻ§ā§āĻ°ā§ āĻŦāĻ˛ā§āĻā§āĻ¨, āĻ¤āĻž āĻāĻ°ā§ āĻāĻŋāĻā§āĻ° āĻāĻā§āĻāĻŋāĻ¤; āĻ¸ā§āĻāĻŋ āĻā§?
- āĻŦāĻŋāĻŦā§āĻāĻ¨āĻžāĻŦā§āĻ§
- āĻĒā§āĻ°āĻļāĻžāĻ¨ā§āĻ¤āĻŋ
- āĻ§ā§āĻ°ā§āĻ¯āĻļā§āĻ˛āĻ¤āĻž
- āĻĻ
āĻāĻ¤āĻŋāĻŽāĻ¯āĻŧāĻ¤āĻž
Ans. āĻĒā§āĻ°āĻļāĻžāĻ¨ā§āĻ¤āĻŋ
- āĻā§āĻ¨āĻāĻŋ āĻĒāĻ°ā§āĻ¤ā§āĻāĻŋāĻ āĻļāĻŦā§āĻĻ āĻ¨āĻ¯āĻŧ?
- āĻāĻ˛āĻĒāĻŋāĻ¨
- āĻāĻ˛āĻŦā§āĻžāĻ˛āĻž
- āĻāĻ˛āĻŽāĻžāĻ°āĻŋ
- āĻāĻ¨āĻžāĻ°āĻ¸
Ans. āĻāĻ˛āĻŦā§āĻžāĻ˛āĻž
- āĻŦāĻŋāĻāĻžāĻ° āĻāĻ°ā§ āĻāĻžāĻ āĻāĻ°ā§ āĻ¨āĻž āĻ¯ā§, āĻ¤āĻžāĻā§ āĻāĻāĻāĻĨāĻžāĻ¯āĻŧ āĻŦāĻ˛ā§-
- āĻ āĻ¨ā§āĻĻāĻžāĻ°
- āĻ āĻļāĻŋāĻā§āĻˇāĻŋāĻ¤āĻĒāĻā§
- āĻ āĻŦāĻŋāĻŽā§āĻˇā§āĻ¯āĻāĻžāĻ°ā§
- āĻ āĻā§āĻ¤ā§āĻāĻ¯āĻŧ
Ans. āĻ āĻŦāĻŋāĻŽā§āĻˇā§āĻ¯āĻāĻžāĻ°ā§
- āĻ¨āĻŋāĻā§āĻ° āĻā§āĻ¨āĻāĻŋ āĻāĻ¤ā§āĻ¤āĻŽ āĻĒā§āĻ°ā§āĻˇā§āĻ° āĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻĒāĻĻā§āĻ° āĻāĻĻāĻžāĻšāĻ°āĻŖ?
- āĻāĻ°ā§āĻ
- āĻāĻ°ā§āĻāĻŋ
- āĻāĻ°ā§āĻāĻŋāĻ¸
- āĻāĻ°ā§āĻā§āĻ¨
Ans. āĻāĻ°ā§āĻāĻŋ
- āĻŖ-āĻ¤ā§āĻŦ āĻŦāĻŋāĻ§āĻžāĻ¨ āĻ
āĻ¨ā§āĻ¸āĻžāĻ°ā§ āĻā§āĻ˛ āĻŦāĻžāĻ¨āĻžāĻ¨ āĻāĻā§ āĻā§āĻ¨ āĻā§āĻā§āĻā§?
- āĻ§āĻ°āĻ¨, āĻĒā§āĻ°āĻžāĻ¨ā§
- āĻ¨ā§āĻ¤ā§āĻ°āĻā§āĻ¨āĻž, āĻā§āĻšāĻā§āĻŖ
- āĻā§āĻˇāĻŖāĻāĻžāĻ˛, āĻŦāĻ°ā§āĻˇāĻŖ
- āĻŽā§āĻ˛ā§āĻ¯āĻžāĻ¯āĻŧāĻŖ, āĻ¨āĻŋāĻ°ā§āĻĒāĻ¨
Ans. āĻŽā§āĻ˛ā§āĻ¯āĻžāĻ¯āĻŧāĻŖ, āĻ¨āĻŋāĻ°ā§āĻĒāĻ¨
- āĻā§āĻ¨āĻāĻŋ āĻ
āĻĒāĻĒā§āĻ°ā§ā§āĻ?
- āĻāĻāĻ¤ā§āĻ°
- āĻāĻāĻ¤ā§āĻ°āĻŋāĻ¤
- āĻāĻāĻ¤āĻžāĻ˛
- āĻāĻāĻ¤āĻž
Ans. āĻāĻāĻ¤ā§āĻ°āĻŋāĻ¤
- âāĻāĻŦāĻžāĻ°ā§āĻ° āĻ¸āĻāĻā§āĻ°āĻžāĻŽ āĻ¸ā§āĻŦāĻžāĻ§ā§āĻ¨āĻ¤āĻžāĻ° āĻ¸āĻāĻā§āĻ°āĻžāĻŽâ-āĻāĻāĻžāĻ¨ā§ āĻāĻžāĻ°āĻ-āĻŦāĻŋāĻāĻā§āĻ¤āĻŋ āĻŦāĻŋāĻāĻžāĻ°ā§ āĻ¸ā§āĻŦāĻžāĻ§ā§āĻ¨āĻ¤āĻžāĻ°â āĻšāĻ˛ā§-
- āĻ¨āĻŋāĻŽāĻŋāĻ¤ā§āĻ¤āĻžāĻ°ā§āĻĨā§ ā§ŦāĻˇā§āĻ ā§
- āĻ āĻĒāĻžāĻĻāĻžāĻ¨ā§ ā§āĻŽā§
- āĻ¨āĻŋāĻŽāĻŋāĻ¤ā§āĻ¤āĻžāĻ°ā§āĻĨā§ ā§āĻŽā§
- āĻāĻ°ā§āĻŽā§ ā§ŦāĻˇā§āĻ ā§
Ans. āĻ¨āĻŋāĻŽāĻŋāĻ¤ā§āĻ¤āĻžāĻ°ā§āĻĨā§ ā§ŦāĻˇā§āĻ ā§
- ‘āĻ
āĻ¨āĻžāĻŦā§āĻˇā§āĻāĻŋāĻ° āĻĻāĻŋāĻ¨ā§ āĻĢā§āĻ˛ā§āĻ° āĻā§ā§āĻŋāĻ° āĻŽāĻ¤ā§ āĻŽā§āĻ¯āĻŧā§āĻ° āĻŦāĻŋāĻŽāĻ°ā§āĻˇ āĻŽā§āĻ’āĨ¤ āĻā§āĻ¨ āĻ°āĻāĻ¨āĻžāĻ° āĻŦāĻžāĻā§āĻ¯?
- āĻ°ā§āĻāĻ¨ āĻā§āĻ
- āĻŽāĻšāĻžāĻāĻžāĻāĻ¤āĻŋāĻ āĻāĻŋāĻāĻ°ā§āĻāĻ°
- āĻāĻžāĻˇāĻžāĻ° āĻĻā§āĻā§āĻˇā§
- āĻ āĻĒāĻ°āĻŋāĻāĻŋāĻ¤āĻž
Ans. āĻ āĻĒāĻ°āĻŋāĻāĻŋāĻ¤āĻž
-
āĻ¨āĻŋāĻā§āĻ° āĻā§āĻ¨ āĻāĻŦāĻŋāĻ¤āĻžāĻ¯āĻŧ āĻā§āĻ°āĻ¯āĻŧ āĻ¨āĻāĻ°ā§āĻ° āĻĒā§āĻ°āĻ¸āĻā§āĻ āĻāĻā§?
- āĻ¸āĻžāĻŽā§āĻ¯āĻŦāĻžāĻĻā§
- āĻ¸ā§āĻ āĻ āĻ¸ā§āĻ¤ā§āĻ°
- āĻāĻāĻ¤āĻžāĻ¨
- āĻŦāĻŋāĻā§āĻˇāĻŖā§āĻ° āĻĒā§āĻ°āĻ¤āĻŋ āĻŽā§āĻāĻ¨āĻžāĻĻ
Ans. āĻ¸ā§āĻ āĻ āĻ¸ā§āĻ¤ā§āĻ°
- âāĻ¸āĻžāĻŽā§āĻ¯āĻŦāĻžāĻĻā§â āĻāĻŦāĻŋāĻ¤āĻžāĻ¯āĻŧ āĻāĻ˛ā§āĻ˛ā§āĻāĻā§āĻ¤ âāĻā§āĻ¨ā§āĻĻāĻžāĻŦā§āĻ¸ā§āĻ¤āĻžâ āĻā§?
- āĻāĻāĻĒā§āĻ°āĻāĻžāĻ°ā§āĻ° āĻāĻžāĻĻā§āĻ¯
- āĻ§āĻ°ā§āĻŽ āĻŦāĻŋāĻļā§āĻˇ
- āĻĒāĻžāĻ°āĻ¸ā§āĻ¯ā§āĻ° āĻ āĻā§āĻ¨āĻŋ āĻāĻĒāĻžāĻ¸āĻāĻĻā§āĻ° āĻ§āĻ°ā§āĻŽāĻā§āĻ°āĻ¨ā§āĻĨ āĻ āĻāĻžāĻˇāĻž
- āĻāĻĄāĻŧāĻŋāĻˇā§āĻ¯āĻžāĻ° āĻāĻāĻāĻŋ āĻ¸ā§āĻĨāĻžāĻ¨
Ans. āĻĒāĻžāĻ°āĻ¸ā§āĻ¯ā§āĻ° āĻ āĻā§āĻ¨āĻŋ āĻāĻĒāĻžāĻ¸āĻāĻĻā§āĻ° āĻ§āĻ°ā§āĻŽāĻā§āĻ°āĻ¨ā§āĻĨ āĻ āĻāĻžāĻˇāĻž
āĻŦāĻžāĻāĻ˛āĻž āĻ˛āĻŋāĻāĻŋāĻ¤ āĻ āĻāĻļ
ā§§ā§āĨ¤ āĻ¸āĻžāĻ°āĻŽāĻ°ā§āĻŽ āĻ˛ā§āĻ (āĻ
āĻ¨āĻ§āĻŋāĻ āĻāĻžāĻ° āĻŦāĻžāĻā§āĻ¯ā§):
āĻ¤āĻžāĻ āĻāĻŽāĻŋ āĻŽā§āĻ¨ā§ āĻ¨āĻŋāĻ āĻ¸ā§ āĻ¨āĻŋāĻ¨ā§āĻĻāĻžāĻ° āĻāĻĨāĻž
āĻāĻŽāĻžāĻ° āĻ¸ā§āĻ°ā§āĻ° āĻ
āĻĒā§āĻ°ā§āĻŖāĻ¤āĻžāĨ¤
āĻāĻŽāĻžāĻ° āĻāĻŦāĻŋāĻ¤āĻž, āĻāĻžāĻ¨āĻŋ āĻāĻŽāĻŋ
āĻā§āĻ˛ā§āĻ āĻŦāĻŋāĻāĻŋāĻ¤ā§āĻ° āĻĒāĻĨā§ āĻšāĻ¯āĻŧ āĻ¨āĻžāĻ āĻ¸ā§ āĻ¸āĻ°ā§āĻŦāĻ¤ā§āĻ°āĻāĻžāĻŽā§āĨ¤
āĻā§āĻˇāĻžāĻŖā§āĻ° āĻā§āĻŦāĻ¨ā§āĻ° āĻļāĻ°āĻŋāĻ āĻ¯ā§ āĻāĻ¨,
āĻāĻ°ā§āĻŽā§ āĻ āĻāĻĨāĻžāĻ¯āĻŧ āĻ¸āĻ¤ā§āĻ¯ āĻāĻ¤ā§āĻŽā§āĻ¯āĻŧāĻ¤āĻž āĻāĻ°ā§āĻā§ āĻ
āĻ°ā§āĻāĻ¨,
āĻ¯ā§ āĻāĻā§ āĻŽāĻžāĻāĻŋāĻ° āĻāĻžāĻāĻžāĻāĻžāĻāĻŋ,
āĻ¸ā§ āĻāĻŦāĻŋāĻ° āĻŦāĻžāĻŖā§-āĻ˛āĻžāĻāĻŋ āĻāĻžāĻ¨ āĻĒā§āĻ¤ā§ āĻāĻāĻŋāĨ¤
ā§§ā§ŽāĨ¤ āĻāĻžāĻŦ āĻ¸āĻŽā§āĻĒā§āĻ°āĻ¸āĻžāĻ°āĻŖ āĻāĻ° (āĻ
āĻ¨āĻ§āĻŋāĻ āĻĒāĻžāĻāĻāĻāĻŋ āĻŦāĻžāĻā§āĻ¯ā§):
āĻ āĻŦāĻ¯āĻŧāĻ¸ā§ āĻ¤āĻžāĻ āĻ¨ā§āĻ āĻā§āĻ¨ā§ āĻ¸āĻāĻļāĻ¯āĻŧ
āĻ āĻĻā§āĻļā§āĻ° āĻŦā§āĻā§ āĻāĻ āĻžāĻ°ā§ āĻāĻ¸ā§āĻ āĻ¨ā§āĻŽā§āĨ¤
ā§§ā§¯āĨ¤ âāĻ¸ā§āĻŦāĻžāĻ§ā§āĻ¨āĻ¤āĻžāĻ° āĻ¸ā§āĻŦāĻ°ā§āĻŖ āĻāĻ¯āĻŧāĻ¨ā§āĻ¤ā§â āĻ¨āĻŋāĻ¯āĻŧā§ āĻĒāĻžāĻāĻāĻāĻŋ āĻŦāĻžāĻā§āĻ¯ āĻ˛ā§āĻāĨ¤
ā§¨ā§ĻāĨ¤ âāĻ¨āĻĻā§â āĻļāĻŦā§āĻĻā§āĻ° āĻĒāĻžāĻāĻāĻāĻŋ āĻ¸āĻŽāĻžāĻ°ā§āĻĨ āĻļāĻŦā§āĻĻ āĻ˛ā§āĻāĨ¤
āĻāĻāĻ°ā§āĻāĻŋ
Fill in the blank with the most appropriate option. (Questions 1-8)
- âĻâĻâĻâĻâĻ. his alert and vigilant presence, all predatory animals were said to have been kept within bounds.
- Hence
- However
- in addition to
- Because of
Ans. Because of
- Complete the following sentence using the most suitable options given below: “If had a car, … … …”
- I took you to a long drive
- I would have taken you to a long drive
- I would have been taken you to a long drive
- I would take you to a long drive
Ans. I would take you to a long drive
- Complete the sentence with the most appropriate option below. âThe organization helps âĻâĻâĻâĻ. elderly.â
- the
- an
- a
- no article
Ans. the
- Do you get âĻâĻâĻ. well âĻâĻâĻ your sister?
- by, to
- on, with
- into, with
- in, to
Ans. on, with
- Do not make so much noise. Shibli âĻâĻâĻ.. to study for his admission test
- try
- tries
- tried
- is trying
Ans. is trying
- Would you mind âĻâĻâĻâĻâĻ a cup of coffee with me?
- drink
- having to drink
- having
- to drink
Ans. having
- Bangladesh is âĻâĻâĻâĻ.. huge inland open water resources.
- equipped with
- submerged by
- blessed by
- blessed with
Ans. blessed with
-
By this time next year, I âĻâĻ. all my exams.
- will taken
- have taken
- will have taken
- took
Ans. will have taken
- The synonym of âincompatibleâ is-
- disqualified
- incomprehensible
- unsuitable
- incompetent
Ans. unsuitable
- If you are skeptical you are â
- credulous
- villainous
- philosophical
- doubtful
Ans. doubtful
- Change the voice of this sentence: âHe does not like people laughing at himâ.
- People laughing at him are not liked by him
- He does not like being laughed at.
- To be laughed at by people are not like by him
- He does not like him being laughed at by people.
Ans. People laughing at him are not liked by him
- The noun of âboreâ is â
- boring
- bores
- bored
- boredom
Ans. boredom
- Whose book is that?
- Itâs of Mitaâs.
- Itâs Mitasâ
- Itâs Mitaâs
- Its Mitaâs
Ans. Itâs Mitaâs
- The antonym of âmalignâ is-
- hostile
- bad
- benign
- harmful
Ans. benign
- Choose the correctly spelled word.
- Synonymus
- Hippopotamous
- Hypocrisy
- Antonymus
Ans. Hypocrisy
English Written Part
ā§¨ā§§āĨ¤ Write a short paragraph of 10 sentences on ‘The Dying Buriganga River’
ā§¨ā§¨āĨ¤ What is personification? Give an example of personification.
ā§¨ā§ŠāĨ¤
“I love to rise in a summer morn,
When the birds sing on every tree;
The distant huntsman winds his horn,
O what sweet company!”
Which poem are these lines taken from? Who wrote this poem? What is the tone of the poem?
ā§¨ā§ĒāĨ¤ Write 10 sentences on how to minimize the chances of getting infected by the Corona Virus.