DU A Unit Admission Question Solution 2020-2021

DU A Unit Admission Question Solution 2020-2021

āύāĻŋāĻšā§‡āϰ āĻ­āĻŋāĻĄāĻŋāĻ“āϤ⧇ āĻĻ⧇āϖ⧇ āύāĻžāĻ“ āĻŦāĻŋāĻ¸ā§āϤāĻžāϰāĻŋāϤ:

āϕ⧋āĻ°ā§āϏāϟāĻŋ āĻ•āĻŋāύāϤ⧇ āĻĒāĻžāĻļ⧇āϰ āĻŦāĻžāϟāύāϟāĻŋ āĻ•ā§āϞāĻŋāĻ• āĻ•āϰ:   

 

āϕ⧋āĻ°ā§āϏ⧇āϰ āĻĄā§‡āĻŽā§‹ āĻ­āĻŋāĻĄāĻŋāĻ“(āĻāĻ­āĻžāĻŦ⧇ āĻĒāĻĻāĻžāĻ°ā§āĻĨāĻŦāĻŋāĻœā§āĻžāĻžāύ+āϰāϏāĻžā§Ÿāύ+āωāĻšā§āϚāϤāϰāĻ—āĻŖāĻŋāϤ āĻāϰ āĻŦāĻŋāĻ—āϤ āĻŦāĻŋāĻļ āĻŦāĻ›āϰ⧇āϰ āϏāĻ•āϞ āĻĒā§āϰāĻļā§āύ⧇āϰ āϏāĻŽāĻžāϧāĻžāύ āĻĨāĻžāĻ•āĻŦ⧇ āĻ­āĻŋāĻĄāĻŋāĻ“āϤ⧇)

 

āĻĒāĻĻāĻžāĻ°ā§āĻĨāĻŦāĻŋāĻœā§āĻžāĻžāύ

  1. āĻāĻ•āϟāĻŋ āϏāĻŽāĻžāĻ¨ā§āϤāϰāĻžāϞ āĻĒāĻžāϤ āϧāĻžāϰāĻ•āϕ⧇ āϚāĻžāĻ°ā§āϜāĻŋāϤ āĻ•āϰāĻžāϰ āĻĒāϰ āĻŦā§āϝāĻžāϟāĻžāϰāĻŋ āϖ⧁āϞ⧇ āĻĢ⧇āϞāĻž āĻšāϞ⧋āĨ¤ āĻ āĻ…āĻŦāĻ¸ā§āĻĨāĻžāϝāĻŧ āϧāĻžāϰāĻ•āϟāĻŋāϤ⧇ āϏāĻžā§āϚāĻŋāϤ āĻļāĻ•ā§āϤāĻŋāϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ \(U_{0}\)āĨ¤ āĻĒāĻžāϤ āĻĻ⧁āϟāĻŋāϰ āĻĻā§‚āϰāĻ¤ā§āĻŦ āϝāĻĻāĻŋ āĻĻā§āĻŦāĻŋāϗ⧁āĻŖ āĻ•āϰāĻž āĻšāϝāĻŧ, āϤāĻŦ⧇ āϧāĻžāϰāϕ⧇ āϏāĻžā§āϚāĻŋāϤ āĻļāĻ•ā§āϤāĻŋ āĻ•āϤāϗ⧁āύ āĻšāĻŦ⧇?

    1. \(\frac{U_{0}}{2}\)
    2. \(\frac{U_{0}}{4}\)
    3. \(2 U_{0}\)
    4. \(4 U_{0}\)

    Ans. \(2 U_{0}\)

  2. q āφāϧāĻžāύ āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āĻāĻ•āϟāĻŋ āĻ—āĻžā§‡āϞāĻ•āϕ⧇ āĻāĻ•āϟāĻŋ āĻ…āĻĒāϰāĻŋāĻŦāĻžāĻšā§€ āϏ⧂āϤāĻžāϰ āĻāĻ•āĻĒā§āϰāĻžāĻ¨ā§āϤ āĻŦ⧇āρāϧ⧇ \(\omega\) āĻ•ā§ŒāĻŖāĻŋāĻ• āĻŦ⧇āϗ⧇ āϘāĻžā§‡āϰāĻžāύ⧋
    āĻšāĻšā§āϛ⧇āĨ¤ āĻ˜ā§‚āĻ°ā§āĻŖāĻžāϝāĻŧāĻŽāĻžāύ āφāϧāĻžāύāϟāĻŋ āϕ⧀ āĻĒāϰāĻŋāĻŽāĻžāĻŖ āĻŦāĻŋāĻĻā§āĻ¯ā§ā§Ž āĻ‰ā§ŽāĻĒāĻ¨ā§āύ āĻ•āϰāĻŦ⧇?

    1. \(\omega q\)
    2. \(2 \pi \omega q\)
    3. \(\frac{q}{\omega}\)
    4. \(\frac{q \omega}{2 \pi}\)

    Ans. \(\frac{q \omega}{2 \pi}\)

  3. āĻ¸ā§āĻĨāĻŋāϤāĻŋāĻ¸ā§āĻĨāĻžāĻĒāĻ• āϗ⧁āĻŖāĻžāĻ‚āϕ⧇āϰ āĻŽāĻžāĻ¤ā§āϰāĻž āϕ⧀?

    1. \(\mathrm{MLT}^{-1}\)
    2. \(\mathrm{ML}^{-1} \mathrm{~T}^{-2}\)
    3. \(\mathrm{MLT}^{-2}\)
    4. \(\mathrm{ML}^{2} \mathrm{~T}^{-2}\)

    Ans. \(\mathrm{ML}^{-1} \mathrm{~T}^{-2}\)

  4. āϕ⧋āύ āĻ¤ā§āϰ⧁āϟāĻŋ āĻĻā§‚āϰ⧀āĻ•āϰāϪ⧇ āωāĻ¤ā§āϤāϞ āϞ⧇āĻ¨ā§āϏ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻž āĻšāϝāĻŧ?
    1. āĻ•ā§āώ⧀āĻŖ āĻĻ⧃āĻˇā§āϟāĻŋ
    2. āĻĻā§‚āϰ āĻĻ⧃āĻˇā§āϟāĻŋ
    3. āϚāĻžāϞāĻļ⧇
    4. āĻŦāĻŋāώāĻŽ āĻĻ⧃āĻˇā§āϟāĻŋ

    Ans. āĻĻā§‚āϰ āĻĻ⧃āĻˇā§āϟāĻŋ

  5. \({ }_{13}^{27} \mathrm{Al}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{14}^{30} \mathrm{Si}+()\) āύāĻŋāωāĻ•ā§āĻ˛ā§€ā§Ÿ āĻŦāĻŋāĻ•ā§āϰāĻŋ⧟āĻžāϤ⧇ āĻ…āύ⧁āĻĒāĻ¸ā§āĻĨāĻŋāϤ āĻ•āĻŖāĻžāϟāĻŋ āĻšāϞ-
    1. āφāϞāĻĢāĻž āĻ•āĻŖāĻž
    2. āĻĒā§āϰ⧋āϟāύ
    3. āχāϞ⧇āĻ•āĻŸā§āϰāύ
    4. āύāĻŋāωāĻŸā§āϰāύ

    Ans. āĻĒā§āϰ⧋āϟāύ

  6. āĻāĻ•āϟāĻŋ āϏāϰāϞ āĻĻā§‹āϞāϕ⧇āϰ āĻĻā§‹āϞāύāĻ•āĻžāϞ 50% āĻŦāĻžāĻĄāĻŧāĻžāϤ⧇ āĻāϰ āĻ•āĻžāĻ°ā§āϝāĻ•āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ⧇āϰ āĻĒāϰāĻŋāĻŦāĻ°ā§āϤāύ āĻ•āϤ āĻšāĻŦ⧇?
    1. 25%
    2. 100%
    3. 125%
    4. 67%

    Ans. 125%

  7. āϕ⧋āύ⧋ āφāĻĻāĻ°ā§āĻļ āĻ—ā§āϝāĻžāϏ⧇āϰ āϤāĻžāĻĒāĻŽāĻžāĻ¤ā§āϰāĻž āϕ⧇āϞāĻ­āĻŋāύ āĻ¸ā§āϕ⧇āϞ⧇ 4 āϗ⧁āĻŖ āĻŦ⧃āĻĻā§āϧāĻŋ āĻĒ⧇āϞ⧇ āϤāĻžāϰ āĻ…āϪ⧁āϗ⧁āϞ⧋āϰ āĻŽā§‚āϞ āĻ—āĻĄāĻŧ āĻŦāĻ°ā§āĻ—āĻŦ⧇āĻ— āĻ•āϤ āϗ⧁āĻŖ āĻŦ⧃āĻĻā§āϧāĻŋ āĻĒāĻžā§Ÿ?
    1. 4
    2. \(1 / 2\)
    3. 2
    4. 1

    Ans. 2

  8. 14 āĻŽāĻŋāύāĻŋāϟ āĻĒāϰ⧇ āĻāĻ•āϟāĻŋ āϤ⧇āϜāĻ¸ā§āĻ•ā§āϰāĻŋāϝāĻŧ āĻŽā§ŒāϞ⧇āϰ \(\frac{1}{16}\) āĻ…āĻ‚āĻļ āĻ…āĻŦāĻļāĻŋāĻˇā§āϟ āĻĨāĻžāϕ⧇āĨ¤ āĻāϰ āĻ…āĻ°ā§āϧāĻžāϝāĻŧ⧁ āĻšāĻŦ⧇-
    1. \(\frac{7}{8} \mathrm{~min}\)
    2. \(\frac{7}{4} \mathrm{~min}\)
    3. \(\frac{7}{2} \mathrm{~min}\)
    4. \(\frac{14}{3} \mathrm{~min}\)

    Ans. \(\frac{7}{2} \mathrm{~min}\)

  9. āϕ⧋āύ⧋ āĻĻāĻŋāĻ• āĻĒāϰāĻŋāĻŦāĻ°ā§āϤ⧀ āϤāĻĄāĻŧāĻŋāĻšā§āϚāĻžāϞāĻ• āĻŦāϞ⧇āϰ āĻ—āĻĄāĻŧāĻŦāĻ°ā§āϗ⧇āϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ āĻŽāĻžāύ 10 voltāĨ¤ āϤāĻĄāĻŧāĻŋāĻšā§āϚāĻžāϞāĻ• āĻŦāϞ⧇āϰ āĻļā§€āĻ°ā§āώāĻŽāĻžāύ āĻšāϞ⧋-
    1. 10.00 volt
    2. 5.00 volt
    3. 1.41 volt
    4. 14.14 volt

    Ans. 14.14 volt

  10. a āĻāϰ āĻŽāĻžāύ āĻ•āϤ āĻšāϞ⧇ \(\vec{A}=2 \hat{\imath}+2 \hat{\jmath}-\hat{k}\) āĻāĻŦāĻ‚ \(\overrightarrow{\mathrm{B}}=a \hat{\imath}+\hat{\jmath}\) āϭ⧇āĻ•ā§āϟāϰāĻĻā§āĻŦāϝāĻŧ āĻĒāϰāĻ¸ā§āĻĒāϰ āϞāĻŽā§āĻŦ āĻšāĻŦ⧇?
    1. 0
    2. \(\frac{7}{4} \)
    3. \(-1\)
    4. 2

    Ans. \(-1\)

  11. āĻ•āϤ āĻŦ⧇āϗ⧇ āϚāϞāϞ⧇ āĻāĻ•āϟāĻŋ āϰāϕ⧇āĻŸā§‡āϰ āĻ—āϤāĻŋāĻļā§€āϞ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āĻāϰ āύāĻŋāĻļā§āϚāϞ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ⧇āϰ āĻ…āĻ°ā§āϧ⧇āĻ• āĻšāĻŦ⧇?
    1. \(\frac{1}{2} c\)
    2. \(\frac{\sqrt{3}}{2} c\)
    3. \(\frac{3}{\sqrt{2}} C\)
    4. \(\frac{3}{4} C\)

    Ans. \(\frac{\sqrt{3}}{2} c\)

  12. āĻāĻ•āϟāĻŋ m āĻ­āϰ⧇āϰ āĻŦāĻ¸ā§āϤ⧁ āϘāĻ°ā§āώāĻŖāĻŦāĻŋāĻšā§€āύ āĻāĻ•āϟāĻŋ āϤāϞ⧇ v āĻŦ⧇āϗ⧇ āϚāϞāĻžāϰ āϏāĻŽāϝāĻŧ āĻāĻ•āϟāĻŋ āĻ¸ā§āĻĒā§āϰāĻŋāĻ‚-āĻāϰ āϏāĻžāĻĨ⧇ āϧāĻžāĻ•ā§āĻ•āĻž āϞ⧇āϗ⧇ āĻ¸ā§āĻĒā§āϰāĻŋāĻ‚āϟāĻŋāϕ⧇ āϏāĻ‚āϕ⧁āϚāĻŋāϤ āĻ•āϰāϞāĨ¤ āĻ¸ā§āĻĒā§āϰāĻŋāĻ‚āϟāĻŋāϰ āĻŦāϞ-āĻ§ā§āϰ⧁āĻŦāĻ• k āĻšāϞ⧇ āĻ¸ā§āĻĒā§āϰāĻŋāĻ‚āϟāĻŋ āĻ•āϤāϟ⧁āϕ⧁ āϏāĻ‚āϕ⧁āϚāĻŋāϤ āĻšāĻŦ⧇?
    1. \(\sqrt{\frac{m}{k}} v\)
    2. \(\sqrt{\frac{k}{m}} v\)
    3. \(\sqrt{k v}\)
    4. \(\sqrt{m v}\)

    Ans. \(\sqrt{\frac{m}{k}} v\)

  13. āĻ…āĻ­āĻŋāĻ•āĻ°ā§āώ⧀āϝāĻŧ āĻ¤ā§āĻŦāϰāĻŖ g āĻŦāύāĻžāĻŽ āĻĒ⧃āĻĨāĻŋāĻŦā§€ āĻĒ⧃āĻˇā§āĻ  āĻšāϤ⧇ āĻ—āĻ­ā§€āϰāϤāĻž h āĻāϰ āϞ⧇āĻ–āϚāĻŋāĻ¤ā§āϰ āϕ⧋āύāϟāĻŋ?

    Ans.

  14. āχāϝāĻŧāĻ‚ āĻāϰ āĻĻā§āĻŦāĻŋ-āϚāĻŋāϰ āĻĒāϰ⧀āĻ•ā§āώāϪ⧇āϰ āϚāĻŋāϰāĻĻā§āĻŦāϝāĻŧ⧇āϰ āĻŽāĻ§ā§āϝāĻŦāĻ°ā§āϤ⧀ āĻĻā§‚āϰāĻ¤ā§āĻŦ āĻšāϞ⧋ d āĻāĻŦāĻ‚ āϚāĻŋāϰāĻĻā§āĻŦāϝāĻŧ āĻĨ⧇āϕ⧇ āĻĒāĻ°ā§āĻĻāĻž D āĻĻā§‚āϰāĻ¤ā§āĻŦ⧇ āĻ…āĻŦāĻ¸ā§āĻĨāĻŋāϤāĨ¤
    āĻĒāĻ°ā§āĻĻāĻžāϰ āωāĻĒāϰ āĻĒā§āϰāϤāĻŋ āĻāĻ•āĻ• āĻĒā§āϰāĻ¸ā§āĻĨ⧇ āĻĄā§‹āϰāĻžāϰ āϏāĻ‚āĻ–ā§āϝāĻž āĻšāϞ⧋-

    1. \(\frac{D}{d \lambda}\)
    2. \(\frac{d}{D \lambda}\)
    3. \(\frac{\lambda}{D d}\)
    4. \(\frac{d^{2}}{\lambda D^{3}}\)

    Ans. \(\frac{d}{D \lambda}\)

  15. āĻāĻ•āϟāĻŋ āĻŦāĻ¸ā§āϤ⧁ 12 m āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ⧇āϰ āĻāĻ•āϟāĻŋ āĻŦ⧃āĻ¤ā§āϤāĻžāĻ•āĻžāϰ āĻĒāĻĨ⧇ āϚāϞāĻŽāĻžāύ āφāϛ⧇āĨ¤ āĻāĻ•āϟāĻŋ āĻŽā§āĻšā§‚āĻ°ā§āϤ⧇ āĻŦ⧃āĻ¤ā§āϤāĻžāĻ•āĻžāϰ āĻĒāĻĨ⧇ āĻāϰ āĻĻā§āϰ⧁āϤāĻŋ
    6 m/s āĻāĻŦāĻ‚ āĻāϟāĻŋ \(4 \mathrm{~m} / \mathrm{s}^{2}\) āĻšāĻžāϰ⧇ āĻŦ⧃āĻĻā§āϧāĻŋ āĻĒāĻžāĻšā§āϛ⧇āĨ¤ āϐ āĻŽā§āĻšā§‚āĻ°ā§āϤ⧇ āĻŦāĻ¸ā§āϤ⧁āϟāĻŋāϰ āĻ¤ā§āĻŦāϰāϪ⧇āϰ āĻŽāĻžāύ āĻ•āϤ?

    1. \(2 \mathrm{~m} / \mathrm{s}^{2}\)
    2. \(3 \mathrm{~m} / \mathrm{s}^{2}\)
    3. \(4 \mathrm{~m} / \mathrm{s}^{2}\)
    4. \(5 \mathrm{~m} / \mathrm{s}^{2}\)

    Ans. \(5 \mathrm{~m} / \mathrm{s}^{2}\)

āĻĒāĻĻāĻžāĻ°ā§āĻĨāĻŦāĻŋāĻœā§āĻžāĻžāύ āϞāĻŋāĻ–āĻŋāϤ āĻ…āĻ‚āĻļ

ā§§āĨ¤āĻāĻ•āϜāύ āĻŦāĻžāχāϏāĻžāχāϕ⧇āϞ āφāϰ⧋āĻšā§€ āϏāĻŽāϤāϞ āĻŦāĻ•ā§āϰ āĻĒāĻĨ⧇ v āĻŦ⧇āϗ⧇ āĻ­ā§āϰāĻŽāĻŖ āĻ•āϰāϛ⧇āĨ¤ āϏāĻžāχāϕ⧇āϞ⧇āϰ āϚāĻžāĻ•āĻž āĻāĻŦāĻ‚ āĻĒāĻĨ⧇āϰ āĻŽāĻ§ā§āϝāĻ•āĻžāϰ āĻ¸ā§āĻĨāĻŋāϤāĻŋ āϘāĻ°ā§āώāύ āϗ⧁āύāĻžāĻ‚āĻ• \(\mu_{s}=0.50\)āĨ¤ āϏāĻžāχāϕ⧇āϞ⧇āϰ āωāĻĒāϰ āĻ•ā§āϰāĻŋāϝāĻŧāĻžāϰāϤ āĻŦāϞ āϏāĻŽā§‚āĻšā§‡āϰ āύāĻžāĻŽ āϞāĻŋāĻ–āĨ¤ āϝāĻĻāĻŋ āĻŦ⧇āĻ— v = 10 m/s āĻšāϝāĻŧ, āϤāĻŦ⧇ āϏāĻ°ā§āĻŦāύāĻŋāĻŽā§āύ āĻ•āϤ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ⧇āϰ āĻŦ⧃āĻ¤ā§āϤāĻžāĻ•āĻžāϰ āĻĒāĻĨ⧇ āφāϰ⧋āĻšā§€āϟāĻŋ āĻ­ā§āϰāĻŽāĻŖ āĻ•āϰāϤ⧇ āĻĒāĻžāϰāĻŦ⧇?


āĻ•ā§āϰāĻŋ⧟āĻžāϰāϤ āĻŦāϞāϏāĻŽā§‚āĻš:

  1. āĻ“āϜāύ
  2. āϘāĻ°ā§āώāĻŖ āĻŦāϞ
  3. āϤāϞ⧇āϰ āωāĻ˛ā§āϞāĻŽā§āĻŦ āĻĒā§āϰāϤāĻŋāĻ•ā§āϰāĻŋ⧟āĻž

āϕ⧇āĻ¨ā§āĻĻā§āϰāĻŽā§āĻ–ā§€ āĻŦāϞ = āϘāĻ°ā§āώāĻŖ āĻŦāϞ
āĻŦāĻž, \(\frac{m v^{2}}{r}=\mu R\)
āĻŦāĻž, \(\frac{m v^{2}}{r}=\mu m g\)
āĻŦāĻž, \(\frac{v^{2}}{r}=\mu g\)
āĻŦāĻž, \(r=\frac{v^{2}}{\mu g}\)
āĻŦāĻž, \(r=\frac{10^{2}}{0.5 \times 10}\)
\(\therefore r=20 m\) (Ans.)

⧍āĨ¤ āĻāĻ•āϟāĻŋ āωāĻ¤ā§āϤāϞ āϞ⧇āĻ¨ā§āϏ⧇āϰ āĻĢā§‹āĻ•āĻžāϏ āĻĻā§‚āϰāĻ¤ā§āĻŦ 10 cmāĨ¤ āϞ⧇āĻ¨ā§āϏ⧇āϰ āĻŦāĻžāĻŽ āĻĒāĻžāĻļ⧇ 30 cm āĻĻā§‚āϰ⧇ āĻāĻ•āϟāĻŋ āĻŦāĻ¸ā§āϤ⧁ āϰāĻžāĻ–āĻž āĻšāϞ⧋āĨ¤
āĻĒā§āϰāϤāĻŋāĻŦāĻŋāĻŽā§āĻŦ⧇āϰ āĻ…āĻŦāĻ¸ā§āĻĨāĻžāύ, āĻĒā§āϰāĻ•ā§ƒāϤāĻŋ āĻ“ āĻŦāĻŋāĻŦāĻ°ā§āϧāύ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāĨ¤


  \(f=10 \mathrm{~cm}\)
  \(u=30 \mathrm{~cm}\)
 \(\frac{1}{v}+\frac{1}{u}=\frac{1}{f}\)
āĻŦāĻž, \(\frac{1}{v}=\frac{1}{f}-\frac{1}{u}\)
āĻŦāĻž, \(\frac{1}{v}=\frac{1}{10}-\frac{1}{30}\)
āĻŦāĻž, \(\frac{1}{v}=\frac{3-1}{30}\)
āĻŦāĻž, \(\frac{1}{v}=\frac{2}{30}\)
āĻŦāĻž, \(\frac{1}{v}=\frac{1}{15}\)
āĻŦāĻž, \(v=15\)
āĻŦāĻž, āĻŦāĻŋāĻŦāĻ°ā§āϧāύ, \(m=-\frac{v}{u}\)
   \(=-\frac{15}{30}\)
   \(=-0.5\)
āĻŦāĻžāĻ¸ā§āϤāĻŦ, āωāĻ˛ā§āĻŸā§‹, āĻ–āĻ°ā§āĻŦāĻŋāϤ āĻŦāĻŋāĻŽā§āĻŦ āĻ—āĻ āĻŋāϤ āĻšāĻŦ⧇āĨ¤


ā§ŠāĨ¤ āϚāĻŋāĻ¤ā§āϰ⧇āϰ āĻŦāĻ°ā§āϤāύ⧀āϟāĻŋāϰ \(4.0 \Omega\) āϰ⧋āϧ⧇āϰ āĻĒā§āϰāĻžāĻ¨ā§āϤāĻĻā§āĻŦāϝāĻŧ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āĻŦāĻŋāĻ­āĻŦ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ āĻ•āϤ āĻšāĻŦ⧇?


\(R=\frac{2}{3}+\left(\frac{1}{2}+\frac{1}{4}\right)^{-1}\)
\(R=\frac{2}{3}+\left(\frac{2+1}{4}\right)^{-1}\)
 \(=\frac{2}{3}+\frac{4}{3}\)
 \(=\frac{2+4}{3}\)
 \(=2 \Omega\)
\(I=\frac{V}{R}=\frac{2}{2}=1 A\)
\(\frac{2}{3} \Omega\) āϰ⧋āϧ⧇āϰ āĻŦāĻŋāĻ­āĻŦ, \(V_{\frac{2}{3}}=\frac{2}{3} \times 1=\frac{2}{3} V\)
\(4.0 \Omega\) āϰ⧋āϧ⧇āϰ āĻŦāĻŋāĻ­āĻŦ \(=2-\frac{2}{3}\)
 \(=\frac{6-2}{3}\)
 \(=\frac{4}{3} V\)


ā§ĒāĨ¤ āĻāĻ•āϟāĻŋ āĻ•āĻžāĻ°ā§āύ⧋ āχāĻžā§āϜāĻŋāύ \(T_{H}=900 \mathrm{~K}\) āĻāĻŦāĻ‚ \(T_{L}=300 \mathrm{~K}\) āϤāĻžāĻĒāĻŽāĻžāĻ¤ā§āϰāĻžāϰ āĻŽāĻ§ā§āϝ⧇ āĻ•āĻžāĻ°ā§āϝāϰāϤāĨ¤ āχāĻžā§āϜāĻŋāύāϟāĻŋ āĻĒā§āϰāϤāĻŋ āϚāĻ•ā§āϰ⧇ 0.25 s
āϏāĻŽāϝāĻŧ⧇ 1200 J āĻ•āĻžāϜ āĻ•āϰ⧇āĨ¤ āωāĻšā§āϚ āϤāĻžāĻĒāĻŽāĻžāĻ¤ā§āϰāĻžāϝāĻŧ āϧāĻžāϰāĻ• āĻĨ⧇āϕ⧇ āĻļāĻ•ā§āϤāĻŋ āĻ¸ā§āĻĨāĻžāύāĻžāĻ¨ā§āϤāϰ⧇āϰ āĻĢāϞ⧇ āĻāϰ āĻ•āĻžāĻ°ā§āϝāĻ•āϰ⧀ āĻĒāĻĻāĻžāĻ°ā§āĻĨ⧇āϰ (āĻ…āĻ°ā§āĻĨāĻžā§Ž āφāĻĻāĻ°ā§āĻļ āĻ—ā§āϝāĻžāϏ⧇āϰ) āĻāύāĻŸā§āϰāĻĒāĻŋ āĻŦ⧃āĻĻā§āϧāĻŋ āĻŦ⧇āϰ āĻ•āϰāĨ¤


  \(\frac{T_{H}}{T_{L}}=\frac{Q_{H}}{Q_{L}}\)
āĻŦāĻž, \(\frac{900}{300}=\frac{Q_{H}}{Q_{L}}\)
āĻŦāĻž, \(Q_{H}=3 Q_{L}\)
 \(W=Q_{H}-Q_{L}\)
āĻŦāĻž, \(1200=3 Q_{L}-Q_{L}\)
āĻŦāĻž, \(1200=2 Q_{L}\)
\(Q_{L}=600 \mathrm{~J}\)
\(\therefore Q_{H}=3 \times 600=1800 \mathrm{~J}\)
\(\Delta S_{H}=\frac{Q_{H}}{T_{H}}\)
  \(=\frac{1800}{900} \mathrm{JK}^{-1}\)
  \(=2 \mathrm{JK}^{-1}\)
  \(=2 \times 4 w k^{-1}\)
  \(=8 w k^{-1}\)


āϰāϏāĻžā§Ÿāύ

  1. āĻŦāĻŋāĻļ⧁āĻĻā§āϧ āĻĒāĻžāύāĻŋāϤ⧇ \(\mathrm{OH}^{-}\) āĻāĻŦāĻ‚ \(\mathrm{H}^{+}\) āĻāϰ āĻŽā§‹āϞāĻžāϰ āϘāύāĻŽāĻžāĻ¤ā§āϰāĻž āĻāϰ āĻ…āύ⧁āĻĒāĻžāϤ āĻ•āϤ?

    1. 7

    2. \(10^{-7}\)
    3. 0

    4. 1

    Ans. 1

  2. āĻ…āĻˇā§āϟāĻ• āϏāĻŽā§āĻĒā§āϰāϏāĻžāϰāĻŖ āĻāϰ āωāĻĻāĻžāĻšāϰāĻŖ āϕ⧋āύāϟāĻŋ?

    1. \(\mathrm{BeCl}_{2}\)
    2. \(\mathrm{PCl}_{5}\)
    3. \(\mathrm{BCl}_{3}\)
    4. \(\mathrm{Cl}_{2}\)

    Ans. \(\mathrm{PCl}_{5}\)

  3. āύāĻŋāĻšā§‡āϰ āϕ⧋āύ āϤāĻĄāĻŧāĻŋā§ŽāĻĻā§āĻŦāĻžāϰāϟāĻŋāϰ āĻĒā§āϰāĻŽāĻžāĻŖ āĻŦāĻŋāϜāĻžāϰāĻŖ āĻŦāĻŋāĻ­āĻŦ⧇āϰ āĻŽāĻžāύ āϏāĻŦāĻšā§‡āϝāĻŧ⧇ āĻ•āĻŽ?
    1. \(\mathrm{H}^{+}(\mathrm{aq}) / \mathrm{H}_{2}(\mathrm{~g}), \mathrm{Pt}\)
    2. \(\mathrm{Cu}^{2+}(\mathrm{aq}) / \mathrm{Cu}(\mathrm{s})\)
    3. \(\mathrm{Na}^{+}(\mathrm{aq}) / \mathrm{Na}(\mathrm{s})\)
    4. \(\mathrm{Pt}(\mathrm{s}) / \mathrm{F}(\mathrm{g}) / \mathrm{F}^{-}(\mathrm{aq})\)

    Ans. \(\mathrm{Na}^{+}(\mathrm{aq}) / \mathrm{Na}(\mathrm{s})\)

  4. aA → bB āĻŦāĻŋāĻ•ā§āϰāĻŋ⧟āĻžāϟāĻŋāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āϕ⧋āύāϟāĻŋ āĻŦāĻŋāĻ•ā§āϰāĻŋ⧟āĻžāϰ āĻšāĻžāϰ āύāĻŋāĻ°ā§āĻĻ⧇āĻļ āĻ•āϰ⧇?
    1. \(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d} t}\)
    2. \(-\frac{1}{a} \frac{d[A]}{d t}\)
    3. \(-\frac{d[B]}{d t}\)
    4. \(-\frac{1}{b} \frac{d[A]}{d t}\)

    Ans. \(-\frac{1}{a} \frac{d[A]}{d t}\)

  5. āĻĻ⧁āϧ⧇āϰ āĻĒā§āϰ⧋āϟāĻŋāύ āϕ⧋āύāϟāĻŋ?
    1. āĻ•ā§āϝāĻžāϰ⧋āϟāĻŋāύ
    2. āϞāĻŋāĻĒāĻŋāĻĄ
    3. āĻ•ā§āϝāĻžāϏāĻŋāύ
    4. āĻ˛ā§āϝāĻžāĻ•ā§āϟāĻžāĻ…ā§āϝāĻžāϞāĻŦ⧁āĻŽāĻŋāύ

    Ans. āĻ•ā§āϝāĻžāϏāĻŋāύ

  6. āύāĻŋāĻšā§‡āϰ āϕ⧋āύ āϝ⧌āĻ—āϟāĻŋ āϏāĻŋāϞāĻ­āĻžāϰ āĻĻāĻ°ā§āĻĒāĻŖ āĻĒāϰ⧀āĻ•ā§āώāĻž āĻĻ⧇āϝāĻŧ?
    1. āĻĒā§āϰāĻĒāĻžāύ⧋āύ
    2. āĻĒā§āϰāĻĒāĻŋāύ
    3. āĻĒā§āϰāĻĒāĻžāύāϞ
    4. āĻĒā§āϰāĻĒāĻžāĻ¨ā§āϝāĻžāϞ

    Ans. āĻĒā§āϰāĻĒāĻžāĻ¨ā§āϝāĻžāϞ

  7. āĻŦ⧇āύāϜāĻŋāύ āĻŦāϞāϝāĻŧ āϏāĻ•ā§āϰāĻŋāϝāĻŧāĻ•āĻžāϰ⧀ āĻŽā§‚āϞāĻ• āϕ⧋āύāϟāĻŋ?
    1. \(-\mathrm{NH}_{2}\)
    2. \(-\mathrm{NO}_{2}\)
    3. -CHO
    4. \(-\mathrm{SO}_{3} \mathrm{H}\)

    Ans. \(-\mathrm{NH}_{2}\)

  8. NaCl-āĻāϰ āϏāĻžāĻĨ⧇ \(\mathrm{H}_{2} \mathrm{O}\) āϝ⧋āĻ— āĻ•āϰāϞ⧇ āϕ⧋āύāϟāĻŋ āϘāĻŸā§‡?
    1. \(\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})\)
    2. \(\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq})\)
    3. \(\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})\)
    4. \(\mathrm{Na}^{+}+\mathrm{Cl}^{-}\)

    Ans. \(\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})\)

  9. āĻšāĻžāχāĻĄā§āϰ⧋āύāĻŋāϝāĻŧāĻžāĻŽ āφāϝāĻŧāύ⧇ āϕ⧋āύ āϕ⧋āύ āĻŦāĻ¨ā§āϧāύ āĻŦāĻŋāĻĻā§āϝāĻŽāĻžāύ?
    1. āφāϝāĻŧāύāĻŋāĻ• āĻ“ āϏāĻŽāϝ⧋āĻœā§€ āĻŦāĻ¨ā§āϧāύ
    2. āφāϝāĻŧāύāĻŋāĻ• āĻ“ āϏāĻ¨ā§āύāĻŋāĻŦ⧇āĻļ āĻŦāĻ¨ā§āϧāύ
    3. āϏāĻŽāϝ⧋āĻœā§€ āĻ“ āϏāĻ¨ā§āύāĻŋāĻŦ⧇āĻļ āĻŦāĻ¨ā§āϧāύ
    4. āφāϝāĻŧāύāĻŋāĻ• āĻ“ āĻšāĻžāχāĻĄā§āϰ⧋āĻœā§‡āύ āĻŦāĻ¨ā§āϧāύ

    Ans. āϏāĻŽāϝ⧋āĻœā§€ āĻ“ āϏāĻ¨ā§āύāĻŋāĻŦ⧇āĻļ āĻŦāĻ¨ā§āϧāύ

  10. āύāĻŋāĻšā§‡āϰ āϕ⧋āύāϟāĻŋ āϏāĻ¤ā§āϝ āύāϝāĻŧ?
    1. \(\mathrm{K}_{w}=1 \times 10^{-14}\)
    2. \(\mathrm{pK}_{w}=14\)
    3. \(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{w}\)
    4. \(K_{w}=1 \times 10^{14} M\)

    Ans. \(K_{w}=1 \times 10^{14} M\)

  11. āĻ•ā§āϰ⧋āĻŽāĻŋāĻ• āĻāϏāĻŋāĻĄ āĻĻā§āĻŦāĻžāϰāĻž āĻ•āĻžāρāϚāĻĒāĻžāĻ¤ā§āϰ āĻĒāϰāĻŋāĻˇā§āĻ•āĻžāϰ āĻ•āϰāĻžāϰ āϏāĻŽāϝāĻŧ āϕ⧋āύ āϧāϰāύ⧇āϰ āĻŦāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻž āϘāĻŸā§‡?
    1. āϜāĻžāϰāĻŖ
    2. āĻĒā§āϰāϤāĻŋāĻ¸ā§āĻĨāĻžāĻĒāύ
    3. āĻĒā§āϰāĻļāĻŽāύ
    4. āĻŦāĻŋāϜāĻžāϰāĻŖ

    Ans. āϜāĻžāϰāĻŖ

  12. As- āĻ āĻ•ā§ŸāϟāĻŋ āϝ⧇āĻžāϜāύ āχāϞ⧇āĻ•āĻŸā§āϰāύ āφāϛ⧇?
    1. 3
    2. 4
    3. 5
    4. 6

    Ans. 5

  13. āĻ…ā§āϝāĻžāϞāĻ•āĻžāχāϞ āĻšā§āϝāĻžāϞāĻžāχāĻĄā§‡āϰ E2 āĻ…āĻĒāϏāĻžāϰāĻŖ āĻŦāĻŋāĻ•ā§āϰāĻŋ⧟āĻžā§Ÿ, āĻ…ā§āϝāĻžāϞāϕ⧋āĻšāϞāĻŋāĻ• KOH/NaOH āĻāϰ āĻ­ā§‚āĻŽāĻŋāĻ•āĻž āĻšāϞ⧋-

    1. āĻ•ā§āώāĻžāϰ
    2. āĻĻā§āϰāĻžāĻŦāĻ•
    3. āĻ…āύ⧁āϘāϟāĻ•
    4. āύāĻŋāωāĻ•ā§āϞāĻŋāĻ“āĻĢāĻžāχāϞ

    Ans. āĻ•ā§āώāĻžāϰ

  14. \(\mathrm{R}_{\mathrm{H}}\) āϰāĻŋāĻĄāĻŦāĻžāĻ°ā§āĻ— āĻ§ā§āϰ⧁āĻŦāĻ• āĻšāϞ⧇, āĻšāĻžāχāĻĄā§āϰ⧋āĻœā§‡āύ āĻĒāϰāĻŽāĻžāϪ⧁āϰ āĻŦāĻ°ā§āĻŖāĻžāϞāĻŋāϤ⧇ āĻŦāĻžāĻŽāĻžāϰ āϏāĻŋāϰāĻŋāĻœā§‡āϰ āϜāĻ¨ā§āϝ āϏāĻ°ā§āĻŦāύāĻŋāĻŽā§āύ āĻ•āϤ āϤāϰāĻ™ā§āĻ—, āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϰāĻļā§āĻŽāĻŋ āĻŦāĻŋāĻ•āĻŋāϰāĻŋāϤ āĻšā§Ÿ?
    1. \(\frac{3}{4} \mathrm{R}_{\mathrm{H}}\)
    2. \(\frac{5}{36} \mathrm{R}_{\mathrm{H}}\)
    3. \(\frac{3}{16} \mathrm{R}_{\mathrm{H}}\)
    4. \(\frac{9}{144} \mathrm{R}_{\mathrm{H}}\)

    Ans. \(\frac{5}{36} \mathrm{R}_{\mathrm{H}}\)

  15. āύāĻŋāĻŽā§āύ⧇āϰ āĻŦāĻŋāĻ•ā§āϰāĻŋ⧟āĻžāϗ⧁āϞ⧋ āĻšāϤ⧇ āĻ•āĻžāĻ°ā§āĻŦāύ⧇āϰ āĻ—āĻŖāύāĻžāĻ•ā§ƒāϤ āĻĻāĻšāύ āϤāĻžāĻĒ āĻšāϞ⧋-
    (i) \(\mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) \quad \Delta \mathrm{H}=-111 \mathrm{~kJ} / \mathrm{mol}\)
    (ii) \(\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-283 \mathrm{~kJ} / \mathrm{mol}\)

    1. 173 \(\mathrm{~kJ} / \mathrm{mol}\)
    2. -394 \(\mathrm{~kJ} / \mathrm{mol}\)
    3. 373 \(\mathrm{~kJ} / \mathrm{mol}\)
    4. 394 \(\mathrm{~kJ} / \mathrm{mol}\)

    Ans. -394 \(\mathrm{~kJ} / \mathrm{mol}\)

āϰāϏāĻžāϝāĻŧāύ (chemistry) āϞāĻŋāĻ–āĻŋāϤ āĻ…āĻ‚āĻļ

ā§ĢāĨ¤ (āĻ•) āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ• āĻŦāĻ¨ā§āϧāύ āϕ⧀? āĻ¨ā§āϝāĻžāĻĢāĻĨāĻžāϞāĻŋāύ āĻ…āϪ⧁āϤ⧇ āĻ•āϝāĻŧāϟāĻŋ āĻāĻŦāĻ‚ āϕ⧀ āϕ⧀ āĻŦāĻ¨ā§āϧāύ āĻŦāĻŋāĻĻā§āϝāĻŽāĻžāύ?
āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ• āĻŦāĻ¨ā§āϧāύ: āĻāĻ•āϟāĻŋ āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ• āĻŦāĻ¨ā§āϧāύ āĻĒāϰāĻŽāĻžāϪ⧁, āφāϝāĻŧāύ āĻŦāĻž āĻ…āϪ⧁āϰ āĻŽāĻ§ā§āϝ⧇ āĻāĻ•āϟāĻŋ āĻ¸ā§āĻĨāĻžāϝāĻŧā§€ āφāĻ•āĻ°ā§āώāĻŖ āϝāĻž āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ• āϝ⧌āĻ— āĻ—āĻ āύ āĻ•āϰ⧇āĨ¤
āĻ¨ā§āϝāĻžāĻĢāĻĨāĻžāϞāĻŋāύ āĻ…āϪ⧁āϤ⧇ āĻŽā§‹āϟ 24āϟāĻŋ āĻŦāĻ¨ā§āϧāύ āĻ°ā§Ÿā§‡āϛ⧇ āϝāĻžāϰ āĻŽāĻ§ā§āϝ⧇ 5āϟāĻŋ āĻĒāĻžāχ āĻŦāĻ¨ā§āϧāύ āĻāĻŦāĻ‚ 19āϟāĻŋ āϏāĻŋāĻ—āĻŽāĻž āĻŦāĻ¨ā§āϧāύāĨ¤



(āĻ–) āĻĒā§āϰāĻžāχāĻŽāĻžāϰāĻŋ, āϏ⧇āϕ⧇āĻ¨ā§āĻĄāĻžāϰāĻŋ āĻ“ āϟāĻžāϰāϏāĻŋāϝāĻŧāĻžāϰāĻŋ āĻ…ā§āϝāĻžāϞāϕ⧋āĻšāϞāϕ⧇ āϕ⧀āĻ­āĻžāĻŦ⧇ āφāϞāĻžāĻĻāĻž āĻ•āϰāĻž āϝāĻžāϝāĻŧ?


āĻ—āĻžā§ HCl āĻ \(ZnCl_2\) āĻāϰ āĻĻā§āϰāĻŦāĻŖāϕ⧇ ‍āϞ⧁āĻ•āĻžāϏ āĻŦāĻŋāĻ•āĻžāϰāĻ• āĻŦāϞ⧇ āϝāĻž \(3^o\) āĻ…ā§āϝāĻžāϞāϕ⧋āĻšāϞ⧇āϰ āϏāĻžāĻĨ⧇ āĻŦāĻŋāĻ•ā§āϰāĻŋ⧟āĻžāϰ āĻ•āϰ⧇ āϏāĻžāĻĨ⧇ āϏāĻžāĻĨ⧇āχ āĻ…ā§āϝāĻžāϞāĻ•āĻžāχāϞ āĻ•ā§āϞ⧋āϰāĻžāχāĻĄā§‡āϰ āϏāĻžāĻĻāĻž āĻ…āϧ:āĻ•ā§āώ⧇āĻĒ āϤ⧈āϰāĻŋ āĻ•āϰ⧇, \(2^o\) āĻ…ā§āϝāĻžāϞāϕ⧋āĻšāϞ⧇āϰ āϏāĻžāĻĨ⧇ āφāĻ¸ā§āϤ⧇ āφāĻ¸ā§āϤ⧇ āĻŦāĻŋāĻ•ā§āϰāĻŋ⧟āĻžāϰ āĻ•āϰ⧇(5-10 āĻŽāĻŋāύāĻŋāĻŸā§‡) āĻ…ā§āϝāĻžāϞāĻ•āĻžāχāϞ āĻ•ā§āϞ⧋āϰāĻžāχāĻĄā§‡āϰ āĻ…āϧ:āĻ•ā§āώ⧇āĻĒ āϤ⧈āϰāĻŋ āĻ•āϰ⧇ āĻāĻŦāĻ‚ \(1^o\) āĻ…ā§āϝāĻžāϞāϕ⧋āĻšāϞ⧇āϰ āϏāĻžāĻĨ⧇ āĻ•āĻ•ā§āώ āϤāĻžāĻĒāĻŽāĻžāĻ¤ā§āϰāĻžā§Ÿ āϕ⧋āύ āĻŦāĻŋāĻ•ā§āϰāĻŋ⧟āĻžāϰ āĻ•āϰ⧇ āύāĻž āϤāĻŦ⧇ āĻŽāĻŋāĻļā§āϰāĻŖāϕ⧇ āωāĻ¤ā§āϤāĻĒā§āϤ āĻ•āϰāϞ⧇ āĻ…āϤ⧀ āϧ⧀āϰ⧇ āĻ…ā§āϝāĻžāϞāĻ•āĻžāχāϞ āĻ•ā§āϞ⧋āϰāĻžāχāĻĄ āϤ⧈āϰāĻŋ āĻ•āϰ⧇āĨ¤


ā§ŦāĨ¤ āĻ…āϰāĻŦāĻŋāϟāĻžāϞ āϕ⧀? āĻĒāĻžāρāϚāϟāĻŋ d-āĻ…āϰāĻŦāĻŋāϟāĻžāϞ⧇āϰ āύāĻžāĻŽ āϞāĻŋāĻ– āĻāĻŦāĻ‚ āĻāĻĻ⧇āϰ āĻĻā§āĻŦāĻŋ-āĻŽāĻžāĻ¤ā§āϰāĻŋāĻ• āϚāĻŋāĻ¤ā§āϰ āĻ…āĻ‚āĻ•āύ āĻ•āϰāĨ¤ āϤāĻĄāĻŧāĻŋā§Ž āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ•āϤāĻž āĻāĻŦāĻ‚ āχāϞ⧇āĻ•ā§āĻŸā§āϰāύ āφāϏāĻ•ā§āϤāĻŋāϰ āĻŽāĻ§ā§āϝ⧇ āĻĒā§āϰāϧāĻžāύ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ āϕ⧀?


āĻ…āϰāĻŦāĻŋāϟāĻžāϞ:āύāĻŋāωāĻ•ā§āϞāĻŋāϝāĻŧāĻžāϏ⧇āϰ āϚāϤ⧁āĻ°ā§āĻĻāĻŋāϕ⧇ āχāϞ⧇āĻ•āĻŸā§āϰāύ⧇āϰ āφāĻŦāĻ°ā§āϤāύ⧇āϰ āϏāĻ°ā§āĻŦāĻžāϧāĻŋāĻ• āϏāĻŽā§āĻ­āĻžāĻŦā§āϝ āĻ…āĻžā§āϚāϞāϕ⧇ āĻ…āϰāĻŦāĻŋāϟāĻžāϞ āĻŦāϞ⧇āĨ¤

āĻ—ā§āϝāĻžāϏ⧀āϝāĻŧ āĻ…āĻŦāĻ¸ā§āĻĨāĻžāϝāĻŧ āϕ⧋āύ⧋ āĻŽā§ŒāϞ⧇āϰ āĻāĻ• āĻŽā§‹āϞ āĻ—ā§āϝāĻžāϏ⧀āϝāĻŧ āĻĒāϰāĻŽāĻžāϪ⧁āϤ⧇ āĻāĻ• āĻŽā§‹āϞ āχāϞ⧇āĻ•āĻŸā§āϰāύ āĻĒā§āϰāĻŦ⧇āĻļ āĻ•āϰāĻŋāϝāĻŧ⧇ āĻāĻ• āĻŽā§‹āϞ āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ• āφāϝāĻŧāύ⧇ āĻĒāϰāĻŋāĻŖāϤ āĻ•āϰāϤ⧇ āϝ⧇ āĻļāĻ•ā§āϤāĻŋ āĻĻāϰāĻ•āĻžāϰ, āϤāĻžāϕ⧇ āϐ āĻŽā§ŒāϞ⧇āϰ āχāϞ⧇āĻ•āĻŸā§āϰāύ āφāϏāĻ•ā§āϤāĻŋ āĻŦāϞ⧇āĨ¤ āφāϰ āĻĻ⧁āϟāĻŋ āĻĒāϰāĻŽāĻžāϪ⧁ āϝāĻ–āύ āϏāĻŽāϝ⧋āĻœā§€ āĻŦāĻ¨ā§āϧāύ⧇ āφāĻŦāĻĻā§āϧ āĻšāϝāĻŧ āϤāĻ–āύ āĻ…āϪ⧁āϰ āĻĒāϰāĻŽāĻžāϪ⧁āϗ⧁āϞ⧋ āĻŦāĻ¨ā§āϧāύ⧇āϰ āχāϞ⧇āĻ•āĻŸā§āϰāύ āĻĻ⧁āϟāĻŋāϕ⧇ āύāĻŋāĻœā§‡āϰ āĻĻāĻŋāϕ⧇ āφāĻ•āĻ°ā§āώāĻŖ āĻ•āϰ⧇āĨ¤ āĻāχ āφāĻ•āĻ°ā§āώāĻŖāϕ⧇ āϤāĻĄāĻŧāĻŋā§Ž āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ•āϤāĻž āĻŦāϞ⧇āĨ¤


ā§­āĨ¤(āĻ•)
(i) \(\mathrm{X} \stackrel{\mathrm{K} \mathrm{O} \mathrm{H}(\mathrm{aq})}{\longrightarrow} \mathrm{Y} \stackrel{[0]}{\rightarrow} \mathrm{Z}\)
(ii) \(\mathrm{Z}+2,4-\mathrm{DNPH} \rightarrow\) Yellow precipitate
(iii) \(\mathrm{Z}+\) Fehling solution \(\rightarrow\) No change
(iv) \(X\) is the isomer of \(C_{4} H_{9} B r\)

āωāĻĒāϰ⧇āϰ āϤāĻĨā§āϝāϗ⧁āϞ⧋ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ āωāĻĒāϝ⧁āĻ•ā§āϤ āϝ⧁āĻ•ā§āϤāĻŋāϏāĻš X, Y āĻāĻŦāĻ‚ Z āĻāϰ āĻ—āĻžāĻ āύāĻŋāĻ• āϏāĻ‚āϕ⧇āϤ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāĨ¤


(ii) āύāĻ‚ āĻļāĻ°ā§āϤāĻŽāϤ⧇ z āĻāĻ•āϟāĻŋ āĻ•āĻžāĻ°ā§āĻŦāύāĻŋāϞ āϝ⧌āĻ— āĻāĻŦāĻ‚ (iii) āύāĻ‚ āĻļāĻ°ā§āϤ āĻšāϤ⧇ āĻŦ⧁āĻāĻž āϝāĻžā§Ÿ āϤāĻž āĻ•āĻŋāĻŸā§‹āύāĨ¤ (iv) āύāĻ‚ āĻļāĻ°ā§āϤāĻŽāϤ⧇ \(X\) āĻšāϞ⧋ \(C_{4} H_{9} B r\) āĻāϰ āϏāĻŽāĻžāϪ⧁ āĻĒāϰāĻŦāĻ°ā§āϤ⧀āϤ⧇ āϝāĻž āĻšāϤ⧇ āĻ…ā§āϝāĻžāϞāϕ⧋āĻšāϞ Y āĻāĻŦāĻ‚ āĻ•āĻŋāĻŸā§‹āύ Z āĻ‰ā§ŽāĻĒāĻ¨ā§āύ āĻšā§Ÿ āϤāĻžāχ X āĻ Br āĻ…āĻŦāĻļā§āϝāχ 2 āύ⧟ āĻ•āĻžāĻ°ā§āĻŦāύ⧇ āφāϛ⧇āĨ¤
X āĻšāϞ⧋: \(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CHBr}-\mathrm{CH}_{3}\)

Y āĻšāϞ⧋:\(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}\)

Z āĻšāϞ⧋:\(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{CH}_{3}\)

(āĻ–) āϞāĻŦāύ āϏ⧇āϤ⧁ āĻ“ āϤāĻĄāĻŧāĻŋā§ŽāĻĻā§āĻŦāĻžāϰ \(\left[(\mathrm{i}) \mathrm{Fe}^{2+}(\mathrm{aq}) / \mathrm{Fe}(\mathrm{s})=-0.44 \mathrm{~V} \text { āĻāĻŦāĻ‚ (ii) } \mathrm{Cu}^{2+}(\mathrm{aq}) / \mathrm{Cu}(\mathrm{s})=0.34 \mathrm{~V}\right]\) āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇, āϤāĻĄāĻŧāĻŋā§Ž āϕ⧋āώāϟāĻŋāϰ āϚāĻŋāĻ¤ā§āϰ āĻ…āĻ™ā§āĻ•āύ āĻ•āϰ āĻāĻŦāĻ‚ āϕ⧋āώ⧇āϰ emf āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāĨ¤



āϕ⧋āώ āĻŦāĻŋāĻ•ā§āϰāĻŋ⧟āĻž: \(F e / F e^{2+} \| C u^{2+} / C u\)
\(E_{\text {cell }}^{o}=E_{F e}^{o} / F e^{2+}+E_{C u^{2+}}^{o} / C u\)
  \(=0.44+0.34\)
  \(=0.78 \mathrm{~V}\)

ā§ŽāĨ¤ āχāĻĨāĻžāύāϝāĻŧāĻŋāĻ• āĻāϏāĻŋāĻĄā§‡āϰ āϜāϞ⧀āϝāĻŧ āĻĻā§āϰāĻŦāϪ⧇āϰ āĻŦāĻŋā§Ÿā§‹āϜāύ āϏāĻžāĻŽā§āϝāĻŦāĻ¸ā§āĻĨāĻž āĻĻ⧇āĻ–āĻžāĻ“ āĻāĻŦāĻ‚ āĻāϰ \(\mathrm{K}_{\mathrm{a}}\) āϏāĻ‚āĻœā§āĻžāĻžāϝāĻŧāĻŋāϤ āĻ•āϰāĨ¤ āϕ⧋āύ āĻļāĻ°ā§āϤ⧇,
\(\mathrm{pK}_{\mathrm{a}}=\mathrm{pH}\) āĻšāĻŦ⧇, āĻĒā§āĻ°ā§Ÿā§‹āϜāύ⧀āϝāĻŧ āϏāĻŽā§€āĻ•āϰāĻŖāϏāĻš āĻŦā§āϝāĻžāĻ–ā§āϝāĻž āĻ•āϰāĨ¤


\(\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}\)
\(K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\)
\(p H=p k_{a}+\log \frac{[\text { Salt }]}{[\text { Acid }]}\)
\(p H=p k_{a}\) āĻšāĻŦ⧇ āϝāĻĻāĻŋ,
\(\log \frac{[\text { Salt }]}{[\text { Acid }]}=0\)
āĻŦāĻž, \(\log \frac{[\text { Salt }]}{[\text { Acid }]}=\log 1\)
āĻŦāĻž, \(\frac{[\text { Salt }]}{[\text { Acid }]}=1\)
āĻŦāĻž, \([\) Salt \(]=[\) Acid \(]\)

āωāĻšā§āϚāϤāϰ āĻ—āĻŖāĻŋāϤ

  1. \(2 x=y^{2}+8 y+22\) āĻĒāϰāĻžāĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻļā§€āĻ°ā§āώāĻŦāĻŋāĻ¨ā§āĻĻ⧁āϰ āĻ¸ā§āĻĨāĻžāύāĻžāĻ‚āĻ• āĻšāĻŦ⧇-

    1. (3,-4)
    2. (-3, 4)
    3. (-3, -4)
    4. (3, 4)

    Ans. (3,-4)

  2. \(\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin ^{2} 2 x}\) āĻāϰ āĻŽāĻžāύ āĻšāĻŦ⧇-
    1. \(\frac{1}{4}\)
    2. \(\frac{1}{8}\)
    3. \(\frac{1}{2}\)
    4. 1

    Ans. \(\frac{1}{8}\)

  3. \(\int_{0}^{2}|x-1| d x=?\)
    1. 0
    2. 1
    3. 2
    4. \(\frac{1}{2}\)

    Ans. 1

  4. āϤāĻŋāύāϟāĻŋ āĻ›āĻ•ā§āĻ•āĻž āĻāĻ•āĻŦāĻžāϰ āύāĻŋāĻ•ā§āώ⧇āĻĒ āĻ•āϰāĻž āĻšāϞ⧇ āϤāĻŋāύāϟāĻŋāϤ⧇āχ āĻāĻ•āχ āϏāĻ‚āĻ–ā§āϝāĻž āĻĒāĻžāĻ“ā§ŸāĻžāϰ āϏāĻŽā§āĻ­āĻžāĻŦāύāĻž āĻ•āϤ?

    1. \(\frac{1}{18}\)
    2. \(\frac{1}{6}\)
    3. \(\frac{1}{216}\)
    4. \(\frac{1}{36}\)

    Ans. \(\frac{1}{36}\)

  5. \(\frac{d}{d x}\left(\cos ^{2}(\ln x)\right)=?\)
    1. \(-\frac{\sin (2 \ln x)}{2}\)
    2. \(-\frac{2 \cos (\ln x)}{x}\)
    3. \(-\frac{\sin (2 \ln x)}{x}\)
    4. \(-2 x \cos (\ln x) \sin (\ln x)\)

    Ans. \(-\frac{\sin (2 \ln x)}{x}\)

  6. \(f(x)=\sqrt{3-\sqrt{x-2}}\) āĻĢāĻžāĻ‚āĻļāύāϟāĻŋāϰ āĻĄā§‹āĻŽā§‡āύ āĻ•āϤ?
    1. \(x \leq 3\)
    2. \(x \geq 2\)
    3. \(2 \leq x \leq 11\)
    4. \(2 \leq x \leq 3\)

    Ans. \(2 \leq x \leq 11\)

  7. \(\operatorname{cosec} \theta+\cot \theta=\sqrt{3}(0<\theta<\pi)\) āĻšāϞ⧇ \(\theta\) āĻāϰ āĻŽāĻžāύ āĻšāĻŦ⧇-
    1. \(\frac{\pi}{2}\)
    2. \(\frac{\pi}{3}\)
    3. \(\frac{\pi}{4}\)
    4. \(\frac{\pi}{6}\)

    Ans. \(\frac{\pi}{3}\)

  8. āϝāĻĻāĻŋ A, B, C āĻŽā§āϝāĻžāĻŸā§āϰāĻŋāĻ•ā§āϏ āϤāĻŋāύāϟāĻŋāϰ āφāĻ•āĻžāϰ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ \(4 \times 5,5 \times 4\) āĻāĻŦāĻ‚ \(4 \times 2\) āĻšā§Ÿ, āϤāĻŦ⧇ \(\left(A^{T}+B\right) C\) āĻŽā§āϝāĻžāĻŸā§āϰāĻŋāĻ•ā§āϏāϟāĻŋāϰ āφāĻ•āĻžāϰ āĻ•āĻŋ?
    1. \(4 \times 2\)
    2. \(5 \times 4\)
    3. \(2 \times 5\)
    4. \(5 \times 2\)

    Ans. \(5 \times 2\)

  9. āĻĒā§‹āϞāĻžāϰ āĻ¸ā§āĻĨāĻžāύāĻžāĻ‚āϕ⧇ \(r^{2}-2 r \sin \theta=3\) āĻāĻ•āϟāĻŋ āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āϏāĻŽā§€āĻ•āϰāĻŖāĨ¤ āĻŦ⧃āĻ¤ā§āϤāϟāĻŋāϰ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ āĻšāĻŦ⧇-
    1. 2
    2. 3
    3. 4
    4. 6

    Ans. 2

  10. 3N āĻ“ 2N āĻŽāĻžāύ⧇āϰ āĻĻ⧁āχāϟāĻŋ āĻŦāϞ⧇āϰ āϞāĻĻā§āĻŦāĻŋ R āĨ¤ āĻĒā§āϰāĻĨāĻŽ āĻŦāϞ⧇āϰ āĻŽāĻžāύ āĻĻā§āĻŦāĻŋāϗ⧁āύ āĻ•āϰāϞ⧇ āϞāĻĻā§āĻŦāĻŋāϰ āĻŽāĻžāύāĻ“ āĻĻā§āĻŦāĻŋāϗ⧁āύ āĻšā§ŸāĨ¤ āĻŦāϞāĻĻā§āĻŦā§Ÿā§‡āϰ āĻŽāĻ§ā§āϝāĻŦāĻ°ā§āϤ⧀ āϕ⧋āϪ⧇āϰ āĻŽāĻžāύ āĻšāĻŦ⧇-
    1. \(30^{\circ}\)
    2. \(120^{\circ}\)
    3. \(65^{\circ}\)
    4. \(45^{\circ}\)

    Ans. \(120^{\circ}\)

  11. 2u āφāĻĻāĻŋāĻŦ⧇āĻ— āĻāĻŦāĻ‚ āĻ…āύ⧁āĻ­ā§‚āĻŽāĻŋāϰ āϏāĻžāĻĨ⧇ āϞāĻŽā§āĻŦāĻ­āĻžāĻŦ⧇ āĻĒā§āϰāĻ•ā§āώāĻŋāĻĒā§āϤ āĻŦāĻ¸ā§āϤ⧁āϰ āϏāĻ°ā§āĻŦā§āĻŦā§‹āĻšā§āϚ āωāĻšā§āϚāϤāĻž āĻšāĻŦ⧇-
    1. \(\frac{u^{2}}{2 g}\)
    2. \(\frac{2 u^{2}}{g}\)
    3. \(\frac{u^{2}}{2 g} \sin \alpha\)
    4. \(\frac{u^{2}}{2 g} \cos \alpha\)

    Ans. \(\frac{2 u^{2}}{g}\)

  12. āϝāĻĻāĻŋ \(y=k x(2 x+\sqrt{3})\) āĻŦāĻ•ā§āϰāϰ⧇āĻ–āĻžāϰ āĻŽā§‚āϞāĻŦāĻŋāĻ¨ā§āĻĻ⧁āϤ⧇ āĻ¸ā§āĻĒāĻ°ā§āĻļāĻ•āϟāĻŋ \(X\) āĻ…āĻ•ā§āώ⧇āϰ āϏāĻžāĻĨ⧇ \(30^{\circ}\) āϕ⧋āĻŖ āĻ•āϰ⧇ āϤāĻžāĻšāϞ⧇ K-āĻāϰ āĻŽāĻžāύ āĻ•āϤ āĻšāĻŦ⧇?

    1. \(\frac{1}{3}\)
    2. \(\sqrt{3}\)
    3. \(\frac{1}{\sqrt{3}}\)
    4. \(\frac{1}{2}\)

    Ans. \(\frac{1}{3}\)

  13. \(x=a \cos \theta+b \sin \theta, y=a \sin \theta-b \cos \theta\) āϕ⧋āύ āϕ⧋āύāĻŋāϕ⧇āϰ āϏāĻŽā§€āĻ•āϰāĻŖ?

    1. ellipse
    2. parabola
    3. circle
    4. hyperbola

    Ans. circle

  14. \(x^{2}-2 x+1=0\) āϏāĻŽā§€āĻ•āϰāĻŖāϟāĻŋāϰ āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āĻ¤ā§āϰāĻŋāϘāĻžāϤ āĻāϰ āϏāĻŽāĻˇā§āϟāĻŋ āĻšāϞ⧋-
    1. -3
    2. 3
    3. -2
    4. 2

    Ans. 2

  15. \((1+x)^{7}(1-x)^{8}\) āĻāϰ āĻŦāĻŋāĻ¸ā§āϤ⧃āϤāĻŋāϤ⧇ \(x^{7}\) āĻāϰ āϏāĻšāĻ— āĻšāϞ⧋-
    1. 15
    2. 30
    3. 25
    4. 35

    Ans. 35

āĻ—āĻŖāĻŋāϤ (Mathematics) āϞāĻŋāĻ–āĻŋāϤ āĻ…āĻ‚āĻļ

⧝⧎ \(x^{3}-3 x^{2}+7 x-5=0\) āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻāĻ•āϟāĻŋ āĻŽā§‚āϞ \((1+2 i)\) āĻšāϞ⧇ āĻ…āĻ¨ā§āϝ āĻŽā§‚āϞāϗ⧁āϞ⧋ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāĨ¤


āĻāĻ•āϟāĻŋ āĻŽā§‚āϞ \((1+2 i)\) āĻšāϞ⧇ āĻ…āĻĒāϰ āĻŽā§‚āϞ \((1-2 i)\)
\((1+2 i)\) āĻ“ \((1-2 i)\) āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ,
\(x^2-2x+5=0\)
āĻĒā§āϰāĻĻāĻ¤ā§āϤ āϏāĻŽā§€āĻ•āϰāĻŖ,

\(x^{3}-3 x^{2}+7 x-5=0\)
āĻŦāĻž, \(x^{3}-2 x^{2}+5x-x^{2}+2 x-5=0\)
āĻŦāĻž, \(x(x^2-2x+5)-1(x^2-2x+5))=0\)
āĻŦāĻž, \((x^2-2x+5)(x-1)=0\)
āĻŦāĻž, \(x=1,1+2 i,1-2 i\)


ā§§ā§Ļ⧎ \(y=x^{2}\) āĻāĻŦāĻ‚ \(x=y^{2}\) āĻĻā§āĻŦāĻžāϰāĻž āϏ⧀āĻŽāĻžāĻŦāĻĻā§āϧ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāĨ¤


\(y=x^{2}\) āĻāĻŦāĻ‚ \(x=y^{2}\) āĻšāϤ⧇ āĻĒāĻžāχ,
\(x^4=x\)
āĻŦāĻž, \(x^4-x=0\)
āĻŦāĻž, \(x(x^3-1)=0\)
āĻŦāĻž, \(x=0,1\)
āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ \(=\int\left(y_{1}-y_{2}\right) d x\)
\(=\int_{0}^{1}\left(x^{\frac{1}{2}}-x^{2}\right) d x\)
\(=\left[\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{x^{2+1}}{2+1}\right]_{0}^{1}\)
\(=\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{3}}{3}\right]_{0}^{1}\)
\(=\frac{2}{3}-\frac{1}{3}\)
\(=\frac{1}{3}\) āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•


ā§§ā§§āĨ¤ āĻĻ⧇āĻ–āĻžāĻ“ āϝ⧇, \(\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\)


\(\tan ^{-1} x=A \quad \therefore x=\tan A\)
\(\tan ^{-1} y=B \quad \therefore y=\tan B\)
\(\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}\)
    \(=\frac{x+y}{1-x y}\)
\(A+B=\tan ^{-1} \frac{x+y}{1-x y}\)
\(\therefore \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\)


⧧⧍āĨ¤ \(5 x_{1}+10 x_{2} \leq 50, x_{1}+x_{2} \geq 1, x_{2} \leq 4, x_{1} \geq 0, x_{2} \geq 0\) āĻļāĻ°ā§āϤāĻžāĻŦāϞ⧀ āϏāĻžāĻĒ⧇āĻ•ā§āώ⧇ \(2 x_{1}+7 x_{2}\) āĻāϰ āϞāϘāĻŋāĻˇā§āĻ  āĻŽāĻžāύ āĻŦ⧇āϰ āĻ•āϰāĨ¤


āĻ…āϏāĻŽāϤāĻžāϰ āĻ…āύ⧁āϰ⧂āĻĒ āϏāĻŽā§€āĻ•āϰāĻŖ,
\(\frac{x_{1}}{10}+\frac{x_{2}}{5}=1\)
\(\frac{x_{1}}{1}+\frac{x_{2}}{1}=1\)
\(x_{2}=4, x_{1}=0, x_{2}=0\)

\(Z_{A}=2(\min )\) Ans
\(Z_{B}=20\)
\(Z_{C}=32\)
\(Z_{D}=28\)
\(Z_{E}=7\)

āĻœā§€āĻŦāĻŦāĻŋāĻœā§āĻžāĻžāύ

  1. āĻĻā§āĻŦ⧈āϤ āĻĒā§āϰāĻšā§āĻ›āĻ¨ā§āύ āĻāĻĒāĻŋāĻ¸ā§āϟāĻžāϏāĻŋāϏ āĻāϰ āĻ…āύ⧁āĻĒāĻžāϤ āĻšāϞ⧋-
    1. 3 : 1
    2. 2 : 1
    3. 13 : 3
    4. 9 : 7

    Ans. āϏāĻžāχāĻ•āĻžāϏ

  2. āύāĻŋāĻšā§‡āϰ āϕ⧋āύāϟāĻŋāϤ⧇ āϕ⧋āϰāĻžāĻ˛ā§Ÿā§‡āĻĄ āĻŽā§‚āϞ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžā§Ÿ?
    1. Pinus
    2. Cycas
    3. Hibiscus
    4. Ficus

    Ans. ⧝:⧭

  3. āϜāϞāĻžāĻ­ā§‚āĻŽāĻŋāϰ āωāĻĻā§āĻ­āĻŋāĻĻ āϕ⧋āύāϟāĻŋ?
    1. Barringtonia acutangula

    2. Tectona grandis

    3. Shorea robusta

    4. Caissia fistula

    Ans. Barringtonia acutangula

  4. āύāĻŋāĻšā§‡āϰ āϕ⧋āύ āĻāĻ¨ā§āϟāĻŋāĻŦāĻĄāĻŋ āĻŦ⧁āϕ⧇āϰ āĻĻ⧁āϧ⧇āϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āĻĒā§āϰāĻŦāĻžāĻšāĻŋāϤ āĻšāϝāĻŧ?
    1. IgA
    2. IgG
    3. IgM
    4. IgE

    Ans. IgA

  5. āĻĒāϤāĻ™ā§āϗ⧇āϰ āϏāĻŽā§āĻĒā§‚āĻ°ā§āĻŖ āϰ⧂āĻĒāĻžāĻ¨ā§āϤāϰ āύāĻŋāĻŽā§āύāϞāĻŋāĻ–āĻŋāϤ āϕ⧋āύ āϧāĻžāĻĒāϗ⧁āϞ⧋ āύāĻŋāϝāĻŧ⧇ āĻ—āĻ āĻŋāϤ?
    1. āĻĄāĻŋāĻŽ-āύāĻŋāĻŽā§āĻĢ-āĻĒā§‚āĻ°ā§āĻŖāĻžāĻ™ā§āĻ—-āĻĒāϤāĻ™ā§āĻ—
    2. āĻĄāĻŋāĻŽ-āϞāĻžāĻ°ā§āĻ­āĻž-āĻĒāĻŋāωāĻĒāĻž-āĻĒā§‚āĻ°ā§āĻŖāĻžāĻ™ā§āĻ—-āĻĒāϤāĻ™ā§āĻ—
    3. āĻĄāĻŋāĻŽ-āϞāĻžāĻ°ā§āĻ­āĻž-āĻĒā§‚āĻ°ā§āĻŖāĻžāĻ™ā§āĻ—-āĻĒāϤāĻ™ā§āĻ—
    4. āĻĄāĻŋāĻŽ-āĻĒāĻŋāωāĻĒāĻž-āϞāĻžāĻ°ā§āĻ­āĻž-āĻĒā§‚āĻ°ā§āĻŖāĻžāĻ™ā§āĻ—-āĻĒāϤāĻ™ā§āĻ—

    Ans. āĻĒā§‚āĻ°ā§āĻŖāĻžāĻ™ā§āĻ— āĻĒāϤāĻ™ā§āĻ—

  6. āĻŽāĻžāύāĻŦāĻĻ⧇āĻšā§‡ āĻ¸ā§āĻŸā§‡āĻŽ āϕ⧋āώ āϕ⧋āĻĨāĻžāϝāĻŧ āĻĒāĻžāĻ“āϝāĻŧāĻž āϝāĻžāϝāĻŧ?
    1. āĻ…āĻ—ā§āĻ¨ā§āϝāĻžāĻļāϝāĻŧ⧇
    2. āϝāĻ•ā§ƒāϤ⧇
    3. āĻ…āĻ¸ā§āĻĨāĻŋāĻŽāĻœā§āϜāĻžāϝāĻŧ
    4. āĻšā§ƒā§ŽāĻĒāĻŋāĻ¨ā§āĻĄā§‡

    Ans. āĻ…āĻ¸ā§āĻĨāĻŋāĻŽāĻœā§āϜāĻžāϝāĻŧ

  7. āĻŽāĻžāύāĻŦāĻĻ⧇āĻšā§‡ āĻ•āϟāĻŋāĻĻ⧇āĻļā§€āϝāĻŧ āĻ…āĻžā§āϚāϞ⧇ āĻ•āĻļ⧇āϰ⧁āĻ•āĻžāϰ āϏāĻ‚āĻ–ā§āϝāĻž?
    1. ā§Ē āϟāĻŋ
    2. ā§­ āϟāĻŋ
    3. ⧧⧍ āϟāĻŋ
    4. ā§Ģ āϟāĻŋ

    Ans. ā§ĢāϟāĻŋ

  8. āĻšā§āϝāĻžāĻĒā§āϟāĻž āĻ•ā§ƒāĻŽāĻŋāϰ āĻŦ⧈āĻœā§āĻžāĻžāύāĻŋāĻ• āύāĻžāĻŽ āĻ•āĻŋ?
    1. Faciola hepatica
    2. Loa loa
    3. Ascaris lumbricoides
    4. None of them

    Ans. Faciola hepatica

  9. āĻŽā§āϝāĻžāĻ¨ā§āϟāϞ āϕ⧋āύ āĻĒāĻ°ā§āĻŦ⧇āϰ āĻŦ⧈āĻļāĻŋāĻˇā§āϟ?
    1. Arthropoda
    2. Mollusca
    3. Annelida
    4. Echinodermata

    Ans. Mollusca

  10. āϕ⧋āύ āĻŦā§āϝāĻžāĻ•ā§āĻŸā§‡āϰāĻŋāϝāĻŧāĻžāϝāĻŧ āĻāĻ•āϟāĻŋ āĻŽāĻžāĻ¤ā§āϰ āĻĢā§āϞāĻžāĻœā§‡āϞāĻž āĻĨāĻžāϕ⧇?
    1. Vibrio cholerae
    2. Spirillum minus
    3. Pseudomonas fluorescens
    4. Bacillus subtilise

    Ans. Vibrio cholerae

  11. āωāĻĻā§āĻ­āĻŋāĻĻ⧇āϰ āϰ⧋āĻŽ āĻ…āĻĨāĻŦāĻž āĻŸā§āϰāĻžāχāϕ⧋āĻŽ āϕ⧋āύāϟāĻŋāϰ āĻ…āĻ‚āĻļ?
    1. āĻ…āϧāσāĻ¤ā§āĻŦāĻ•
    2. āĻ•āĻ°ā§āĻŸā§‡āĻ•ā§āϏ
    3. āĻ¤ā§āĻŦāĻ•
    4. āĻ…āĻ¨ā§āϤāσāĻ¤ā§āĻŦāĻ•

    Ans. āĻ¤ā§āĻŦāĻ•

  12. āύāĻŋāĻšā§‡āϰ āϕ⧋āύāϟāĻŋāϤ⧇ āĻāĻ•āĻŋāύāĻŋāϟāĻŋ āĻāĻŦāĻ‚ āĻšā§‡āϟāĻžāϰ⧋āϏāĻŋāĻ¸ā§āϟ āĻĒāĻžāĻ“āϝāĻŧāĻž āϝāĻžāϝāĻŧ?
    1. Escherichia
    2. Nostoc
    3. Zygnema
    4. Chlorella

    Ans. UGA

  13. āĻĒā§āϰ⧋āĻĢ⧇āϜ-ā§§ āĻāϰ āϕ⧋āύ āĻĒāĻ°ā§āϝāĻžāϝāĻŧ⧇ āĻ•āĻžāϝāĻŧāĻžāϜāĻŽāĻž āϏ⧃āĻˇā§āϟāĻŋ āĻšāϝāĻŧ?
    1. āϞ⧇āĻĒā§āĻŸā§‡āϟāĻŋāύ
    2. āϜāĻžāχāĻ—ā§‹āϟāĻŋāύ
    3. āĻĄāĻŋāĻĒā§āϞ⧋āϟāĻŋāύ
    4. āĻĒā§āϝāĻžāĻ•āĻžāχāϟāĻŋāύ

    Ans. āĻĒā§āϝāĻžāĻ•āĻžāχāϟāĻŋāύ

  14. āĻŽāĻžāύāĻŦāĻĻ⧇āĻšā§‡ āϰāĻ•ā§āϤ⧇āϰ āĻĒā§āϞāĻžāϜāĻŽāĻžāϰ āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• pH āĻ•āϤ?
    1. 7.0
    2. 7.6
    3. 7.8
    4. 7.4

    Ans. 7.4

  15. āϕ⧋āύ āϕ⧋āĻĄāύāϟāĻŋ āϕ⧋āύ⧋ āĻ…ā§āϝāĻžāĻŽāĻžāχāύ⧋ āĻ…ā§āϝāĻžāϏāĻŋāĻĄ āύāĻŋāĻ°ā§āĻĻ⧇āĻļ āĻ•āϰ⧇ āύāĻž?
    1. CCU
    2. ACU
    3. UGA
    4. AAG

    Ans. āĻĒ⧁āĻžā§āĻœā§€āĻ­ā§‚āϤ

āĻœā§€āĻŦāĻŦāĻŋāĻœā§āĻžāĻžāύ (Biology) āϞāĻŋāĻ–āĻŋāϤ āĻ…āĻ‚āĻļ

ā§§ā§ŠāĨ¤ DNA āĻĒā§āϰāϤāĻŋāϞāĻŋāĻĒāύ āĻŦāϞāϤ⧇ āϕ⧀ āĻŦ⧁āĻ? DNA āĻĒā§āϰāϤāĻŋāϞāĻŋāĻĒāύ⧇āϰ āϜāĻ¨ā§āϝ āĻĒā§āĻ°ā§Ÿā§‹āϜāύ⧀āϝāĻŧ āϚāĻžāϰāϟāĻŋ āωāĻĒāĻ•āϰāϪ⧇āϰ āύāĻžāĻŽ āϞāĻŋāĻ–āĨ¤


āĻŸā§āϰāĻžāĻ¨ā§āϏāĻ•ā§āϰāĻŋāĻĒāĻļāύ: RNA āĻĒāϞāĻŋāĻŽāĻžāϰ⧇āϜ āĻāύāϜāĻžāχāĻŽ āĻĻā§āĻŦāĻžāϰāĻž DNA āĻŦ⧇āϏ āϏāĻŋāϕ⧋āϝāĻŧ⧇āĻ¨ā§āϏ āĻ•āĻĒāĻŋ āĻ•āϰ⧇ mRNA āϏāĻ‚āĻļā§āϞ⧇āώāĻŖ āĻĒā§āϰāĻ•ā§āϰāĻŋāϝāĻŧāĻž āĻšāϞāĻžā§‡ āĻŸā§āϰāĻžāĻ¨ā§āϏāĻ•ā§āϰāĻŋāĻĒāĻļāύāĨ¤
āĻŸā§āϰāĻžāĻ¨ā§āϏāĻ•ā§āϰāĻŋāĻĒāĻļāύ āĻĒā§āϰāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϰ āϜāĻ¨ā§āϝ āϝāĻž āĻĒā§āϰāϝāĻŧāĻžā§‡āϜāύ-

  1. DNA āĻ›āĻžāρāϚ (template)
  2. RNA-āĻĒāϞāĻŋāĻŽāĻžāϰ⧇āϜ āĻāύāϜāĻžāχāĻŽ āϝāĻž āϤāĻŋāύ āĻĒā§āϰāĻ•āĻžāϰ āĻšāϤ⧇ āĻĒāĻžāϰ⧇āĨ¤
  3. āĻŽā§āĻ•ā§āϤ āϰāĻžāχāĻŦāĻžā§‡āύāĻŋāωāĻ•ā§āϞāĻŋāϝāĻŧāĻžā§‡āϟāĻžāχāĻĄ āĻŸā§āϰāĻžāχāĻĢāϏāĻĢ⧇āϟ (ATP, GTP, CTP āĻāĻŦāĻ‚ UTP)
  4. āϰāĻžāϏāĻžāϝāĻŧāύāĻŋāĻ• āĻļāĻ•ā§āϤāĻŋ, āĻŸā§āϰāĻžāχāĻĢāϏāĻĢ⧇āϟ āϭ⧇āĻ™ā§āϗ⧇ āύāĻŋāωāĻ•ā§āϞāĻŋāϝāĻŧāĻžā§‡āϟāĻžāχāĻĄ āĻāĻŦāĻ‚ āĻĒāĻžāχāϰāĻžā§‡āĻĢāϏāĻĢ⧇āϟ āϏ⧃āĻˇā§āϟāĻŋāĻ•āĻžāϞ⧇ āĻŽā§āĻ•ā§āϤ āĻšāϝāĻŧāĨ¤
    āĻĒāĻžāχāϰāĻžā§‡āĻĢāϏāĻĢ⧇āϟ āϭ⧇āĻ™ā§āϗ⧇ āĻĻ⧁āχ āφāϝāĻŧāύ āĻĢāϏāĻĢ⧇āϟ āϤ⧈āϰāĻŋ āĻ•āĻžāϞ⧇āĻ“ āĻ•āĻŋāϛ⧁ āĻ…āϤāĻŋāϰāĻŋāĻ•ā§āϤ āĻļāĻ•ā§āϤāĻŋ āĻĒāĻžāĻ“āϝāĻŧāĻž āϝāĻžāϝāĻŧāĨ¤
  5. āĻ•āĻŋāϛ⧁ āϏāĻšāϝāĻžā§‡āĻ—ā§€ āĻĒā§āϰāĻžā§‡āϟāĻŋāύāĨ¤

ā§§ā§ĒāĨ¤ āĻāĻ•āĻŦā§€āϜāĻĒāĻ¤ā§āϰ⧀ āωāĻĻā§āĻ­āĻŋāĻĻ⧇āϰ āĻ•āĻžāĻŖā§āĻĄā§‡āϰ āĻ…āĻ¨ā§āϤāĻ°ā§āĻ—āĻ āύ⧇āϰ āĻĒāĻžāρāϚāϟāĻŋ āĻļāύāĻžāĻ•ā§āϤāĻ•āĻžāϰ⧀ āĻŦ⧈āĻļāĻŋāĻˇā§āĻŸā§āϝ āϞāĻŋāĻ–āĨ¤


āĻāĻ•āĻŦā§€āϜāĻĒāĻ¤ā§āϰ⧀ āωāĻĻā§āĻ­āĻŋāĻĻ⧇āϰ āĻ•āĻžāĻŖā§āĻĄā§‡āϰ āĻ…āĻ¨ā§āϤāĻ°ā§āĻ—āĻ āύ⧇āϰ āĻļāύāĻžāĻ•ā§āϤāĻ•āĻžāϰ⧀ āĻŦ⧈āĻļāĻŋāĻˇā§āĻŸā§āϝ:

  • āϏāĻžāϧāĻžāϰāĻŖāϤ āĻ•āĻžāĻ¨ā§āĻĄāϰāĻžā§‡āĻŽ āĻ…āύ⧁āĻĒāĻ¸ā§āĻĨāĻŋāϤāĨ¤
  • āĻŦāĻšāĻŋāσāĻ¤ā§āĻŦāϕ⧇ āĻ•āĻŋāωāϟāĻŋāĻ•āϞ āωāĻĒāĻ¸ā§āĻĨāĻŋāϤāĨ¤
  • āĻ…āϧāσāĻ¤ā§āĻŦāĻ• āφāϛ⧇ āĻāĻŦāĻ‚ āϏāĻžāϧāĻžāϰāĻŖāϤ āĻĢā§āϞ⧇āϰ⧇āύāĻ•āĻžāχāĻŽāĻž āϟāĻŋāĻ¸ā§āϝ⧁ āĻĻāĻŋāϝāĻŧ⧇ āĻ—āĻ āĻŋāϤāĨ¤
  • āĻ­āĻžāĻ¸ā§āϕ⧁āϞāĻžāϰ āĻŦāĻžāĻ¨ā§āĻĄāϞāϗ⧁āϞāĻžā§‡ āĻ—ā§āϰāĻžāωāĻ¨ā§āĻĄ āϟāĻŋāĻ¸ā§āϝ⧁āϤ⧇ āĻŦāĻŋāĻ•ā§āώāĻŋāĻĒā§āϤāĻ­āĻžāĻŦ⧇ āĻ›āĻĄāĻŧāĻžāύāĻžā§‡āĨ¤
  • āĻŽā§‡āϟāĻžāϜāĻžāχāϞ⧇āĻŽ āĻĒāϰāĻŋāϧāĻŋāϰ āĻĻāĻŋāϕ⧇ āĻāĻŦāĻ‚ āĻĒā§āϰāĻžā§‡āĻŸā§‹āϜāĻžāχāϞ⧇āĻŽ āϕ⧇āĻ¨ā§āĻĻā§āϰ⧇āϰ āĻĻāĻŋāϕ⧇ āĻ…āĻŦāĻ¸ā§āĻĨāĻŋāϤāĨ¤
  • āϜāĻžāχāϞ⧇āĻŽ Y āĻŦāĻž V āφāĻ•ā§ƒāϤāĻŋāĻŦāĻŋāĻļāĻŋāĻˇā§āϟāĨ¤
  • āĻ­āĻžāĻ¸ā§āϕ⧁āϞāĻžāϰ āĻŦāĻžāĻ¨ā§āĻĄāϞ āϏāĻ‚āϝ⧁āĻ•ā§āϤ, āϏāĻŽāĻĒāĻžāĻ°ā§āĻļā§āĻŦā§€āϝāĻŧ āĻ“ āĻŦāĻĻā§āϧ (āϜāĻžāχāϞ⧇āĻŽ āĻ“ āĻĢā§āϞ⧋āϝāĻŧ⧇āĻŽā§‡āϰ āĻŽāĻžāĻā§‡ āĻ•ā§āϝāĻžāĻŽā§āĻŦāĻŋāϝāĻŧāĻžāĻŽ āύ⧇āχ)āĨ¤

ā§§ā§Ģ⧎ Platyhelminthes āĻāĻŦāĻ‚ Nemathelminthes āĻāϰ āĻĒāĻžāρāϚāϟāĻŋ āĻĒā§āϰāϧāĻžāύ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ āϞāĻŋāĻ–āĨ¤


Platyhelminthes āĻāĻŦāĻ‚ Nemathelminthes āĻāϰ āĻĒāĻžāρāϚāϟāĻŋ āĻĒā§āϰāϧāĻžāύ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ:

āĻŦāĻŋāώ⧟ Platyhelminthes Nemathelminthes
āϏāĻžāϧāĻžāϰāĻŖ āύāĻžāĻŽ āĻšā§āϝāĻžāĻĒā§āϟāĻž āĻ•ā§ƒāĻŽāĻŋ āϏ⧁āϤāĻžāĻ•ā§ƒāĻŽāĻŋ āĻŦāĻž āĻ—āĻžā§‡āϞāĻ•ā§ƒāĻŽāĻŋ
āϏāĻ‚āĻ—āĻ āύ āĻŽāĻžāĻ¤ā§āϰāĻž āϟāĻŋāĻ¸ā§āϝ⧁-āĻ…āĻ™ā§āĻ— āĻŽāĻžāĻ¤ā§āϰāĻž āĻ…āĻ™ā§āĻ—āϤāĻ¨ā§āĻ¤ā§āϰ āĻŽāĻžāĻ¤ā§āϰāĻž
āϏāĻŋāϞāĻžā§‡āĻŽ āĻ…ā§āϝāĻžāϏāĻŋāϞāĻžā§‡āĻŽā§‡āϟ āϏ⧁āĻĄāĻžā§‡āϏāĻŋāϞāĻžā§‡āĻŽā§‡āϟ
āϝ⧌āύ āĻĻā§āĻŦāĻŋāϰ⧂āĻĒāϤāĻžāĨ¤ āĻ…āύ⧁āĻĒāĻ¸ā§āĻĨāĻŋāϤ āωāĻĒāĻ¸ā§āĻĨāĻŋāϤ
āĻļāĻŋāĻ–āĻž āϕ⧋āώ āωāĻĒāĻ¸ā§āĻĨāĻŋāϤ āĻ…āύ⧁āĻĒāĻ¸ā§āĻĨāĻŋāϤ
āĻšā§‹āώāĻ• āωāĻĒāĻ¸ā§āĻĨāĻŋāϤ āĻ…āύ⧁āĻĒāĻ¸ā§āĻĨāĻŋāϤ

ā§§ā§ŦāĨ¤ āĻŽāĻžāύāĻŦāĻĻ⧇āĻšā§‡āϰ āϝ⧇ āϕ⧋āύ⧋ ā§§ā§ĻāϟāĻŋ āĻ•āϰ⧋āϟāĻŋāĻ•āĻž āĻ¸ā§āύāĻžāϝāĻŧ⧁āϰ āύāĻžāĻŽ āϞāĻŋāĻ–āĨ¤


ā§§ā§ĻāϟāĻŋ āĻ•āϰāĻžā§‡āϟāĻŋāĻ• āĻ¸ā§āύāĻžāϝāĻŧ⧁āϰ āύāĻžāĻŽ:

  1. āĻ…āϞāĻĢā§āϝāĻžāĻ•ā§āϟāϰāĻŋ āĻŦāĻž āĻ˜ā§āϰāĻžāĻŖ āĻ—ā§āϰāĻšāĻŖāĻ•āĻžāϰ⧀ āĻ¸ā§āύāĻžāϝāĻŧ⧁āĨ¤
  2. āĻ…āĻĒāϟāĻŋāĻ• āĻŦāĻž āĻĻāĻ°ā§āĻļāύ āĻ¸ā§āύāĻžāϝāĻŧ⧁āĨ¤
  3. āĻ…āϕ⧁āϞāĻžā§‡āĻŽāĻžā§‡āϟāϰ
  4. āĻŸā§āϰāϞāĻŋāϝāĻŧāĻžāϰ āĻŦāĻž āĻĒā§āϝāĻžāĻĨ⧇āϟāĻŋāĻ• āĻ¸ā§āύāĻžāϝāĻŧ⧁āĨ¤
  5. āĻŸā§āϰāĻžāχāĻœā§‡āĻŽāĻŋāύāĻžāϞ
  6. āĻ…ā§āϝāĻžāĻŦāĻĄāĻŧ⧁āϏ⧇āĻ¨ā§āϏāĨ¤
  7. āĻĢā§āϝāĻžāϏāĻŋāϝāĻŧāĻžāϞāĨ¤
  8. āĻ…āĻĄāĻŋāϟāϰāĻŋ āĻŦāĻž āϭ⧇āĻ¸ā§āϟāĻŋāĻŦ⧁āϞāĻžā§‡ āĻ•āĻ•āϞāĻŋāϝāĻŧāĻžāϰ āĻ¸ā§āύāĻžāϝāĻŧ⧁āĨ¤ |
  9. āĻ—ā§āϞāϏāĻžā§‡āĻĢā§āϝāĻžāϰāĻŋāĻžā§āϜāĻŋāϝāĻŧāĻžāϞ
  10. āϭ⧇āĻ—āĻžāϏ āĻŦāĻž āύāĻŋāωāĻŽāĻžā§‡āĻ—ā§āϝāĻžāĻ¸ā§āĻŸā§āϰāĻŋāĻ• āĻŦāĻž āĻ•ā§āώ⧁āϧāĻžāĻ°ā§āϤ āĻ¸ā§āύāĻžāϝāĻŧ⧁āĨ¤ |
  11. āĻ…ā§āϝāĻžāĻ•ā§āϏ⧇āϏāϰāĻŋāĨ¤
  12. āĻšāĻžāχāĻĒāĻžā§‡āĻ—ā§āϞ⧋āϏāĻžāϞ

āĻŦāĻžāĻ‚āϞāĻž

  1. “āϚāĻŋāĻ¤ā§āϰāĻŽāϝāĻŧ āĻŦāĻ°ā§āĻŖāύāĻžāϰ āĻŦāĻžāĻŖā§€â€- āĻ•āĻŦāĻŋ āϕ⧋āĻĨāĻž āĻĨ⧇āϕ⧇ āϕ⧁āĻĄāĻŧāĻŋāϝāĻŧ⧇ āφāύ⧇āύ?

    1. āĻĒā§āϰāĻ•ā§ƒāϤāĻŋāϰ āϐāĻ•āϤāĻžāύ āĻ¸ā§āϰ⧋āϤ āĻĨ⧇āϕ⧇
    2. āĻ­ā§āϰāĻŽāύ āĻŦ⧃āĻ¤ā§āϤāĻžāĻ¨ā§āϤ āĻĨ⧇āϕ⧇
    3. āĻŽāĻžāύāώ⧇āϰ āϕ⧀āĻ°ā§āϤāĻŋ āĻĨ⧇āϕ⧇
    4. āĻ•āĻŦāĻŋāϤāĻž āĻĨ⧇āϕ⧇

    Ans. āĻ­ā§āϰāĻŽāύ āĻŦ⧃āĻ¤ā§āϤāĻžāĻ¨ā§āϤ āĻĨ⧇āϕ⧇

  2. āϏāĻžāϞāĻžāĻŽā§‡āϰ āĻšāĻžāϤ āĻĨ⧇āϕ⧇ āĻ•āĻŋāϏ⧇āϰ āĻŽāϤ⧋ āĻ…āĻŦāĻŋāύāĻžāĻļā§€ āĻŦāĻ°ā§āĻŖāĻŽāĻžāϞāĻž āĻāϰ⧇?
    1. āĻ•ā§ƒāĻˇā§āĻžāĻšā§‚ā§œāĻžāϰ āĻŽāϤ
    2. āϰāĻ•ā§āϤ⧇āϰ āĻŦ⧁āĻĻāĻŦ⧁āĻĻ⧇āϰ āĻŽāϤ
    3. āĻŦāĻŋāĻĒā§āϞāĻŦ⧇āϰ āĻŽāϤ
    4. āύāĻ•ā§āώāĻ¤ā§āϰ⧇āϰ āĻŽāϤ

    Ans. āύāĻ•ā§āώāĻ¤ā§āϰ⧇āϰ āĻŽāϤ

  3. āĻ¸ā§āĻĨāĻŋāϰ āĻļāĻŦā§āĻĻ⧇āϰ āĻŦāĻŋāĻĒāϰ⧀āϤ āĻļāĻŦā§āĻĻ āĻšāϞ⧋-
    1. āϜāĻ™ā§āĻ—āĻŽ
    2. āϕ⧋āϞāĻžāĻšāϞ
    3. āωāĻšā§āϚāϰāĻŦ
    4. āύāĻŋāĻļā§āϚāϞ

    Ans. āϜāĻ™ā§āĻ—āĻŽ

  4. āĻŦ⧇āĻ—āĻŽ āϰ⧋āϕ⧇āϝāĻŧāĻž āϏāĻžāĻ–āĻžāĻ“āϝāĻŧāĻžāϤ āĻšā§‹āϏ⧇āύ āϏāĻ­ā§āϝāϤāĻžāϰ āϏāĻ™ā§āϗ⧇ āĻĻāĻžāϰāĻŋāĻĻā§āĻ°ā§āϝ āĻŦ⧃āĻĻā§āϧāĻŋāϰ āϕ⧀ āĻ•āĻžāϰāĻŖ āύāĻŋāĻ°ā§āĻĻ⧇āĻļ āĻ•āϰ⧇āϛ⧇āύ?

    1. āĻ…āϞāϏāϤāĻž
    2. āĻŦāĻŋāϞāĻžāϏāĻŋāϤāĻž
    3. āĻ…āϏāϤāϤāĻž
    4. āĻ…āĻœā§āĻžāϤāĻž

    Ans. āĻŦāĻŋāϞāĻžāϏāĻŋāϤāĻž

  5. āĻ•āĻžāĻœā§€ āύāϜāϰ⧁āϞ āχāϏāϞāĻžāĻŽā§‡āϰ āĻŽāϤ⧇, āĻ•āĻŋāϏ⧇āϰ āĻŽāĻ§ā§āϝ āĻĻāĻŋāϝāĻŧ⧇ āϏāĻ¤ā§āϝāϕ⧇ āĻĒāĻžāĻ“āϝāĻŧāĻž āϝāĻžāϝāĻŧ?
    1. āĻŽāύ⧁āĻˇā§āϝāĻ¤ā§āĻŦ
    2. āϧāĻ°ā§āĻŽ
    3. āϏāĻ‚āĻ—ā§āϰāĻžāĻŽ
    4. āϭ⧁āϞ

    Ans. āϭ⧁āϞ

  6. āĻŦ⧃āĻ•ā§āώ āϕ⧇āĻŦāϞ āĻŦ⧃āĻĻā§āϧāĻŋāϰ āχāĻļāĻžāϰāĻž āύāϝāĻŧ, āĻŽāĻžā§‡āϤāĻžāĻšā§‡āϰ āĻšā§‹āϏ⧇āύ āϚ⧌āϧ⧁āϰ⧀ āĻŦāϞ⧇āϛ⧇āύ, āϤāĻž āφāϰ⧋ āĻ•āĻŋāϛ⧁āϰ āχāĻ™ā§āĻ—āĻŋāϤ; āϏ⧇āϟāĻŋ āϕ⧀?
    1. āĻŦāĻŋāĻŦ⧇āϚāύāĻžāĻŦā§‹āϧ
    2. āĻĒā§āϰāĻļāĻžāĻ¨ā§āϤāĻŋ
    3. āϧ⧈āĻ°ā§āϝāĻļā§€āϞāϤāĻž
    4. āĻĻ
      āĻ—āϤāĻŋāĻŽāϝāĻŧāϤāĻž

    Ans. āĻĒā§āϰāĻļāĻžāĻ¨ā§āϤāĻŋ

  7. āϕ⧋āύāϟāĻŋ āĻĒāĻ°ā§āϤ⧁āĻ—āĻŋāϜ āĻļāĻŦā§āĻĻ āύāϝāĻŧ?
    1. āφāϞāĻĒāĻŋāύ
    2. āφāϞāĻŦ⧇āĻžāϞāĻž
    3. āφāϞāĻŽāĻžāϰāĻŋ
    4. āφāύāĻžāϰāϏ

    Ans. āφāϞāĻŦ⧇āĻžāϞāĻž

  8. āĻŦāĻŋāϚāĻžāϰ āĻ•āϰ⧇ āĻ•āĻžāϜ āĻ•āϰ⧇ āύāĻž āϝ⧇, āϤāĻžāϕ⧇ āĻāĻ•āĻ•āĻĨāĻžāϝāĻŧ āĻŦāϞ⧇-
    1. āĻ…āύ⧁āĻĻāĻžāϰ
    2. āĻ…āĻļāĻŋāĻ•ā§āώāĻŋāϤāĻĒāϟ⧁
    3. āĻ…āĻŦāĻŋāĻŽā§ƒāĻˇā§āϝāĻ•āĻžāϰ⧀
    4. āĻ…āϕ⧁āϤ⧋āĻ­āϝāĻŧ

    Ans. āĻ…āĻŦāĻŋāĻŽā§ƒāĻˇā§āϝāĻ•āĻžāϰ⧀

  9. āύāĻŋāĻšā§‡āϰ āϕ⧋āύāϟāĻŋ āωāĻ¤ā§āϤāĻŽ āĻĒ⧁āϰ⧁āώ⧇āϰ āĻ•ā§āϰāĻŋāϝāĻŧāĻžāĻĒāĻĻ⧇āϰ āωāĻĻāĻžāĻšāϰāĻŖ?
    1. āĻ•āϰ⧇āĻ›
    2. āĻ•āϰ⧇āĻ›āĻŋ
    3. āĻ•āϰ⧇āĻ›āĻŋāϏ
    4. āĻ•āϰ⧇āϛ⧇āύ

    Ans. āĻ•āϰ⧇āĻ›āĻŋ

  10. āĻŖ-āĻ¤ā§āĻŦ āĻŦāĻŋāϧāĻžāύ āĻ…āύ⧁āϏāĻžāϰ⧇ āϭ⧁āϞ āĻŦāĻžāύāĻžāύ āφāϛ⧇ āϕ⧋āύ āϗ⧁āĻšā§āϛ⧇?
    1. āϧāϰāύ, āĻĒ⧁āϰāĻžāύ⧋
    2. āύ⧇āĻ¤ā§āϰāϕ⧋āύāĻž, āĻ—ā§ƒāĻšāϕ⧋āĻŖ
    3. āĻ•ā§āώāĻŖāĻ•āĻžāϞ, āĻŦāĻ°ā§āώāĻŖ
    4. āĻŽā§‚āĻ˛ā§āϝāĻžāϝāĻŧāĻŖ, āύāĻŋāϰ⧂āĻĒāύ

    Ans. āĻŽā§‚āĻ˛ā§āϝāĻžāϝāĻŧāĻŖ, āύāĻŋāϰ⧂āĻĒāύ

  11. āϕ⧋āύāϟāĻŋ āĻ…āĻĒāĻĒā§āĻ°ā§Ÿā§‹āĻ—?
    1. āĻāĻ•āĻ¤ā§āϰ
    2. āĻāĻ•āĻ¤ā§āϰāĻŋāϤ
    3. āĻāĻ•āϤāĻžāϞ
    4. āĻāĻ•āϤāĻž

    Ans. āĻāĻ•āĻ¤ā§āϰāĻŋāϤ

  12. ‘āĻāĻŦāĻžāϰ⧇āϰ āϏāĻ‚āĻ—ā§āϰāĻžāĻŽ āĻ¸ā§āĻŦāĻžāϧ⧀āύāϤāĻžāϰ āϏāĻ‚āĻ—ā§āϰāĻžāĻŽâ€™-āĻāĻ–āĻžāύ⧇ āĻ•āĻžāϰāĻ•-āĻŦāĻŋāĻ­āĻ•ā§āϤāĻŋ āĻŦāĻŋāϚāĻžāϰ⧇ āĻ¸ā§āĻŦāĻžāϧ⧀āύāϤāĻžāĻ°â€™ āĻšāϞ⧋-
    1. āύāĻŋāĻŽāĻŋāĻ¤ā§āϤāĻžāĻ°ā§āĻĨ⧇ ā§ŦāĻˇā§āĻ ā§€
    2. āĻ…āĻĒāĻžāĻĻāĻžāύ⧇ ā§­āĻŽā§€
    3. āύāĻŋāĻŽāĻŋāĻ¤ā§āϤāĻžāĻ°ā§āĻĨ⧇ ā§­āĻŽā§€
    4. āĻ•āĻ°ā§āĻŽā§‡ ā§ŦāĻˇā§āĻ ā§€

    Ans. āύāĻŋāĻŽāĻŋāĻ¤ā§āϤāĻžāĻ°ā§āĻĨ⧇ ā§ŦāĻˇā§āĻ ā§€

  13. ‘āĻ…āύāĻžāĻŦ⧃āĻˇā§āϟāĻŋāϰ āĻĻāĻŋāύ⧇ āĻĢ⧁āϞ⧇āϰ āĻ•ā§ā§œāĻŋāϰ āĻŽāϤ⧋ āĻŽā§‡āϝāĻŧ⧇āϰ āĻŦāĻŋāĻŽāĻ°ā§āώ āĻŽā§āĻ–’āĨ¤ āϕ⧋āύ āϰāϚāύāĻžāϰ āĻŦāĻžāĻ•ā§āϝ?
    1. āϰ⧇āχāύ āϕ⧋āϟ
    2. āĻŽāĻšāĻžāϜāĻžāĻ—āϤāĻŋāĻ• āĻ•āĻŋāωāϰ⧇āϟāϰ
    3. āϚāĻžāώāĻžāϰ āĻĻ⧁āĻ•ā§āώ⧁
    4. āĻ…āĻĒāϰāĻŋāϚāĻŋāϤāĻž

    Ans. āĻ…āĻĒāϰāĻŋāϚāĻŋāϤāĻž

  14. āύāĻŋāĻšā§‡āϰ āϕ⧋āύ āĻ•āĻŦāĻŋāϤāĻžāϝāĻŧ āĻŸā§āϰāϝāĻŧ āύāĻ—āϰ⧀āϰ āĻĒā§āϰāϏāĻ™ā§āĻ— āφāϛ⧇?

    1. āϏāĻžāĻŽā§āϝāĻŦāĻžāĻĻā§€
    2. āϏ⧇āχ āĻ…āĻ¸ā§āĻ¤ā§āϰ
    3. āϐāĻ•āϤāĻžāύ
    4. āĻŦāĻŋāĻ­ā§€āώāϪ⧇āϰ āĻĒā§āϰāϤāĻŋ āĻŽā§‡āϘāύāĻžāĻĻ

    Ans. āϏ⧇āχ āĻ…āĻ¸ā§āĻ¤ā§āϰ

  15. ‘āϏāĻžāĻŽā§āϝāĻŦāĻžāĻĻā§€â€™ āĻ•āĻŦāĻŋāϤāĻžāϝāĻŧ āωāĻ˛ā§āϞ⧇āĻ–āĻ•ā§ƒāϤ ‘āĻœā§‡āĻ¨ā§āĻĻāĻžāĻŦ⧇āĻ¸ā§āϤāĻžâ€™ āϕ⧀?
    1. āĻāĻ•āĻĒā§āϰāĻ•āĻžāϰ⧇āϰ āĻ–āĻžāĻĻā§āϝ
    2. āϧāĻ°ā§āĻŽ āĻŦāĻŋāĻļ⧇āώ
    3. āĻĒāĻžāϰāĻ¸ā§āϝ⧇āϰ āĻ…āĻ—ā§āύāĻŋ āωāĻĒāĻžāϏāĻ•āĻĻ⧇āϰ āϧāĻ°ā§āĻŽāĻ—ā§āϰāĻ¨ā§āĻĨ āĻ“ āĻ­āĻžāώāĻž
    4. āωāĻĄāĻŧāĻŋāĻˇā§āϝāĻžāϰ āĻāĻ•āϟāĻŋ āĻ¸ā§āĻĨāĻžāύ

    Ans. āĻĒāĻžāϰāĻ¸ā§āϝ⧇āϰ āĻ…āĻ—ā§āύāĻŋ āωāĻĒāĻžāϏāĻ•āĻĻ⧇āϰ āϧāĻ°ā§āĻŽāĻ—ā§āϰāĻ¨ā§āĻĨ āĻ“ āĻ­āĻžāώāĻž

āĻŦāĻžāĻ‚āϞāĻž āϞāĻŋāĻ–āĻŋāϤ āĻ…āĻ‚āĻļ

ā§§ā§­āĨ¤ āϏāĻžāϰāĻŽāĻ°ā§āĻŽ āϞ⧇āĻ– (āĻ…āύāϧāĻŋāĻ• āϚāĻžāϰ āĻŦāĻžāĻ•ā§āϝ⧇):

āϤāĻžāχ āφāĻŽāĻŋ āĻŽā§‡āύ⧇ āύāĻŋāχ āϏ⧇ āύāĻŋāĻ¨ā§āĻĻāĻžāϰ āĻ•āĻĨāĻž
āφāĻŽāĻžāϰ āϏ⧁āϰ⧇āϰ āĻ…āĻĒā§‚āĻ°ā§āĻŖāϤāĻžāĨ¤
āφāĻŽāĻžāϰ āĻ•āĻŦāĻŋāϤāĻž, āϜāĻžāύāĻŋ āφāĻŽāĻŋ
āϗ⧇āϞ⧇āĻ“ āĻŦāĻŋāϚāĻŋāĻ¤ā§āϰ āĻĒāĻĨ⧇ āĻšāϝāĻŧ āύāĻžāχ āϏ⧇ āϏāĻ°ā§āĻŦāĻ¤ā§āϰāĻ—āĻžāĻŽā§€āĨ¤
āĻ•ā§ƒāώāĻžāϪ⧇āϰ āĻœā§€āĻŦāύ⧇āϰ āĻļāϰāĻŋāĻ• āϝ⧇ āϜāύ,
āĻ•āĻ°ā§āĻŽā§‡ āĻ“ āĻ•āĻĨāĻžāϝāĻŧ āϏāĻ¤ā§āϝ āφāĻ¤ā§āĻŽā§€āϝāĻŧāϤāĻž āĻ•āϰ⧇āϛ⧇ āĻ…āĻ°ā§āϜāύ,
āϝ⧇ āφāϛ⧇ āĻŽāĻžāϟāĻŋāϰ āĻ•āĻžāĻ›āĻžāĻ•āĻžāĻ›āĻŋ,
āϏ⧇ āĻ•āĻŦāĻŋāϰ āĻŦāĻžāĻŖā§€-āϞāĻžāĻ—āĻŋ āĻ•āĻžāύ āĻĒ⧇āϤ⧇ āφāĻ›āĻŋāĨ¤


ā§§ā§ŽāĨ¤ āĻ­āĻžāĻŦ āϏāĻŽā§āĻĒā§āϰāϏāĻžāϰāĻŖ āĻ•āϰ (āĻ…āύāϧāĻŋāĻ• āĻĒāĻžāρāϚāϟāĻŋ āĻŦāĻžāĻ•ā§āϝ⧇):
āĻ āĻŦāϝāĻŧāϏ⧇ āϤāĻžāχ āύ⧇āχ āϕ⧋āύ⧋ āϏāĻ‚āĻļāϝāĻŧ
āĻ āĻĻ⧇āĻļ⧇āϰ āĻŦ⧁āϕ⧇ āφāĻ āĻžāϰ⧋ āφāϏ⧁āĻ• āύ⧇āĻŽā§‡āĨ¤


⧧⧝āĨ¤ ‘āĻ¸ā§āĻŦāĻžāϧ⧀āύāϤāĻžāϰ āϏ⧁āĻŦāĻ°ā§āĻŖ āϜāϝāĻŧāĻ¨ā§āĻ¤ā§€â€™ āύāĻŋāϝāĻŧ⧇ āĻĒāĻžāρāϚāϟāĻŋ āĻŦāĻžāĻ•ā§āϝ āϞ⧇āĻ–āĨ¤


⧍ā§ĻāĨ¤ ‘āύāĻĻā§€â€™ āĻļāĻŦā§āĻĻ⧇āϰ āĻĒāĻžāρāϚāϟāĻŋ āϏāĻŽāĻžāĻ°ā§āĻĨ āĻļāĻŦā§āĻĻ āϞ⧇āĻ–āĨ¤


āχāĻ‚āϰ⧇āϜāĻŋ

Fill in the blank with the most appropriate option. (Questions 1-8)

  1. â€Ļâ€Ļâ€Ļâ€Ļâ€Ļ. his alert and vigilant presence, all predatory animals were said to have been kept within bounds.
    1. Hence
    2. However
    3. in addition to
    4. Because of

    Ans. Because of

  2. Complete the following sentence using the most suitable options given below: “If had a car, … … …”
    1. I took you to a long drive
    2. I would have taken you to a long drive
    3. I would have been taken you to a long drive
    4. I would take you to a long drive

    Ans. I would take you to a long drive

  3. Complete the sentence with the most appropriate option below. “The organization helps â€Ļâ€Ļâ€Ļâ€Ļ. elderly.”
    1. the
    2. an
    3. a
    4. no article

    Ans. the

  4. Do you get â€Ļâ€Ļâ€Ļ. well â€Ļâ€Ļâ€Ļ your sister?
    1. by, to
    2. on, with
    3. into, with
    4. in, to

    Ans. on, with

  5. Do not make so much noise. Shibli â€Ļâ€Ļâ€Ļ.. to study for his admission test
    1. try
    2. tries
    3. tried
    4. is trying

    Ans. is trying

  6. Would you mind â€Ļâ€Ļâ€Ļâ€Ļâ€Ļ a cup of coffee with me?
    1. drink
    2. having to drink
    3. having
    4. to drink

    Ans. having

  7. Bangladesh is â€Ļâ€Ļâ€Ļâ€Ļ.. huge inland open water resources.
    1. equipped with
    2. submerged by
    3. blessed by
    4. blessed with

    Ans. blessed with

  8. By this time next year, I â€Ļâ€Ļ. all my exams.

    1. will taken
    2. have taken
    3. will have taken
    4. took

    Ans. will have taken

  9. The synonym of ‘incompatible’ is-
    1. disqualified
    2. incomprehensible
    3. unsuitable
    4. incompetent

    Ans. unsuitable

  10. If you are skeptical you are –
    1. credulous
    2. villainous
    3. philosophical
    4. doubtful

    Ans. doubtful

  11. Change the voice of this sentence: “He does not like people laughing at him”.
    1. People laughing at him are not liked by him
    2. He does not like being laughed at.
    3. To be laughed at by people are not like by him
    4. He does not like him being laughed at by people.

    Ans. People laughing at him are not liked by him

  12. The noun of ‘bore’ is –
    1. boring
    2. bores
    3. bored
    4. boredom

    Ans. boredom

  13. Whose book is that?
    1. It’s of Mita’s.
    2. It’s Mitas’
    3. It’s Mita’s
    4. Its Mita’s

    Ans. It’s Mita’s

  14. The antonym of ‘malign’ is-
    1. hostile
    2. bad
    3. benign
    4. harmful

    Ans. benign

  15. Choose the correctly spelled word.
    1. Synonymus
    2. Hippopotamous
    3. Hypocrisy
    4. Antonymus

    Ans. Hypocrisy

English Written Part

⧍⧧āĨ¤ Write a short paragraph of 10 sentences on ‘The Dying Buriganga River’


⧍⧍āĨ¤ What is personification? Give an example of personification.


ā§¨ā§ŠāĨ¤
“I love to rise in a summer morn,
When the birds sing on every tree;
The distant huntsman winds his horn,
O what sweet company!”
Which poem are these lines taken from? Who wrote this poem? What is the tone of the poem?


⧍ā§ĒāĨ¤ Write 10 sentences on how to minimize the chances of getting infected by the Corona Virus.


Leave a Comment

Your email address will not be published. Required fields are marked *