DU A Unit Admission Question Solution 2019-2020
āĻ¨āĻŋāĻā§āĻ° āĻāĻŋāĻĄāĻŋāĻāĻ¤ā§ āĻĻā§āĻā§ āĻ¨āĻžāĻ āĻŦāĻŋāĻ¸ā§āĻ¤āĻžāĻ°āĻŋāĻ¤:
āĻā§āĻ°ā§āĻ¸āĻāĻŋ āĻāĻŋāĻ¨āĻ¤ā§ āĻĒāĻžāĻļā§āĻ° āĻŦāĻžāĻāĻ¨āĻāĻŋ āĻā§āĻ˛āĻŋāĻ āĻāĻ°:Â Â
āĻā§āĻ°ā§āĻ¸ā§āĻ° āĻĄā§āĻŽā§ āĻāĻŋāĻĄāĻŋāĻ(āĻāĻāĻžāĻŦā§ āĻĒāĻĻāĻžāĻ°ā§āĻĨāĻŦāĻŋāĻā§āĻāĻžāĻ¨+āĻ°āĻ¸āĻžā§āĻ¨+āĻāĻā§āĻāĻ¤āĻ°āĻāĻŖāĻŋāĻ¤ āĻāĻ° āĻŦāĻŋāĻāĻ¤ āĻŦāĻŋāĻļ āĻŦāĻāĻ°ā§āĻ° āĻ¸āĻāĻ˛ āĻĒā§āĻ°āĻļā§āĻ¨ā§āĻ° āĻ¸āĻŽāĻžāĻ§āĻžāĻ¨ āĻĨāĻžāĻāĻŦā§ āĻāĻŋāĻĄāĻŋāĻāĻ¤ā§)
āĻĒāĻĻāĻžāĻ°ā§āĻĨāĻŦāĻŋāĻā§āĻāĻžāĻ¨
- āĻĻā§āĻāĻāĻŋ āĻā§āĻā§āĻāĻ° \(\overrightarrow{\mathbf{A}}=3 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}\) āĻāĻŦāĻ \(\overrightarrow{\mathbf{B}}=5 \hat{\mathbf{i}}+5 \hat{\mathbf{k}}\) āĻāĻ° āĻŽāĻ§ā§āĻ¯āĻŦāĻ°ā§āĻ¤ā§ āĻā§āĻŖ āĻāĻ¤?
- \(60^{\circ}\)
- \(30^{\circ}\)
- \(45^{\circ}\)
- \(90^{\circ}\)
Ans. \(60^{\circ}\)
- āĻ¸ā§āĻĨāĻŋāĻ° āĻ
āĻŦāĻ¸ā§āĻĨāĻžāĻ¯āĻŧ āĻĨāĻžāĻāĻž āĻāĻāĻāĻŋ āĻŦāĻ¸ā§āĻ¤ā§ āĻŦāĻŋāĻ¸ā§āĻĢā§āĻ°āĻŋāĻ¤ āĻšāĻ¯āĻŧā§ \(\mathrm{m}_{1}\) āĻ \(\mathbf{m}_{2}\) āĻāĻ°ā§āĻ°
āĻĻā§āĻāĻāĻŋ āĻŦāĻ¸ā§āĻ¤ā§āĻ¤ā§ āĻĒāĻ°āĻŋāĻŖāĻ¤ āĻšāĻ¯āĻŧā§ āĻ¯āĻĨāĻžāĻā§āĻ°āĻŽā§ \(\mathbf{v}_{\mathbf{1}}\) āĻ \(\mathbf{v}_{2}\) āĻŦā§āĻā§ āĻŦāĻŋāĻĒāĻ°ā§āĻ¤ āĻĻāĻŋāĻā§ āĻāĻ˛āĻŽāĻžāĻ¨āĨ¤ \(\frac{\mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{2}}}\) āĻāĻ° āĻ āĻ¨ā§āĻĒāĻžāĻ¤ āĻāĻ¤?- \(\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}\)
- \(-\frac{m_{1}}{m_{2}}\)
- \(\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}\)
- \(\sqrt{\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}}\)
Ans. \(\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}\)
-
āĻāĻāĻāĻŋ āĻāĻžāĻĄāĻŧāĻŋ āĻ¸ā§āĻĨāĻŋāĻ° āĻ
āĻŦāĻ¸ā§āĻĨāĻž (P āĻŦāĻŋāĻ¨ā§āĻĻā§) āĻšāĻ¤ā§ āĻ¸ā§āĻāĻž āĻ°āĻžāĻ¸ā§āĻ¤āĻžāĻ¯āĻŧ āĻ¯āĻžāĻ¤ā§āĻ°āĻž
āĻļā§āĻ°ā§ āĻāĻ°āĻ˛āĨ¤ āĻāĻŋāĻā§ āĻ¸āĻŽāĻ¯āĻŧ āĻĒāĻ°ā§ āĻāĻžāĻĄāĻŧāĻŋāĻāĻŋ āĻŽāĻ¨ā§āĻĻāĻ¨ā§āĻ° āĻĢāĻ˛ā§ āĻĨā§āĻŽā§ āĻā§āĻ˛ āĻāĻŦāĻ āĻāĻāĻ āĻāĻžāĻŦā§ (āĻĒā§āĻ°āĻĨāĻŽ āĻāĻ¤āĻŋ āĻŦāĻžāĻĄāĻŧāĻŋāĻ¯āĻŧā§ āĻāĻŦāĻ āĻĒāĻ°ā§ āĻāĻ¤āĻŋ āĻāĻŽāĻŋāĻ¯āĻŧā§) āĻāĻŦāĻžāĻ° āĻ¯āĻžāĻ¤ā§āĻ°āĻž āĻļā§āĻ°ā§ āĻāĻ°ā§ P āĻŦāĻŋāĻ¨ā§āĻĻā§āĻ¤ā§ āĻĢāĻŋāĻ°ā§ āĻāĻ¸āĻ˛ā§āĨ¤ āĻ¨āĻŋāĻā§āĻ° āĻā§āĻ¨ āĻ˛ā§āĻāĻāĻŋāĻ¤ā§āĻ°āĻāĻŋ āĻāĻžāĻĄāĻŧāĻŋāĻ° āĻāĻ¤āĻŋāĻā§ āĻĒā§āĻ°āĻāĻžāĻļ āĻāĻ°ā§?Ans.
- āĻ¨āĻŋāĻā§āĻ° āĻā§āĻ¨āĻāĻŋ āĻāĻ°ā§āĻ° āĻāĻāĻ āĻ¨āĻ¯āĻŧ?
- a.m.u
- \(\mathrm{Nm}^{-1} \mathrm{~s}^{2}\)
- \(\mathrm{MeV}\)
- \(\frac{\mathrm{MeV}}{\mathrm{c}^{2}}\)
Ans. \(\mathrm{MeV}\)
- āĻ¸āĻ°āĻ˛ āĻāĻ¨ā§āĻĻāĻŋāĻ¤ āĻāĻ¤āĻŋāĻ¤ā§ āĻ¸ā§āĻĒāĻ¨ā§āĻĻāĻ¨āĻ°āĻ¤ āĻĻā§āĻāĻŋ āĻāĻŖāĻžāĻ° āĻ¸āĻ°āĻŖ \(\mathbf{x}_{1}=\mathbf{A} \sin \omega \mathbf{t}\)
āĻāĻŦāĻ \(\mathbf{x}_{\mathbf{2}}=\mathbf{A} \cos \omega \mathbf{t}\) āĻ¯ā§ āĻā§āĻ¨ā§ āĻ¸āĻŽāĻ¯āĻŧā§ āĻāĻĻā§āĻ° āĻŽāĻ§ā§āĻ¯ā§ āĻĻāĻļāĻž āĻĒāĻžāĻ°ā§āĻĨāĻā§āĻ¯ āĻāĻ¤ āĻšāĻŦā§?- \(2 \pi\)
- \(\pi\)
- \(\frac{\pi}{2}\)
- \(\frac{\pi}{4}\)
Ans. \(\frac{\pi}{2}\)
- āĻŦā§āĻ¯āĻ¤āĻŋāĻāĻžāĻ°ā§āĻ° āĻā§āĻˇā§āĻ¤ā§āĻ°ā§ āĻāĻā§āĻā§āĻŦāĻ˛ āĻŦāĻž āĻāĻ āĻ¨āĻŽā§āĻ˛āĻ āĻāĻžāĻ˛āĻ°ā§āĻ° āĻļāĻ°ā§āĻ¤ āĻā§āĻ¨āĻāĻŋ?
- \(\sin \theta=(2 n+1) \frac{\lambda}{2}\)
- a \(\sin \theta=n \lambda\)
- \(\sin \theta=n \frac{\lambda}{2}\)
- \(a \sin \theta=(2 n+1) \lambda\)
Ans. a \(\sin \theta=n \lambda\)
- āĻ¨āĻŋāĻā§āĻ° āĻŦāĻ°ā§āĻ¤āĻ¨ā§āĻ¤ā§ āĻ¤āĻĄāĻŧāĻŋā§āĻĒā§āĻ°āĻŦāĻžāĻš \(\mathbf{I}_{\mathbf{1}}\) āĻāĻ° āĻŽāĻžāĻ¨ āĻāĻ¤?
- \(0.2 \mathrm{~A}\)
- \(0.4 \mathrm{~A}\)
- \(0.6 \mathrm{~A}\)
- \(1.2 \mathrm{~A}\)
Ans. \(0.4 \mathrm{~A}\)
- āĻāĻāĻāĻŋ āĻāĻžāĻ°ā§āĻ¨ā§ āĻāĻā§āĻāĻŋāĻ¨ 500 K āĻāĻŦāĻ 250 k āĻ¤āĻžāĻĒāĻŽāĻžāĻ¤ā§āĻ°āĻžāĻ° āĻāĻ§āĻžāĻ°ā§āĻ°
āĻŽāĻžāĻ§ā§āĻ¯āĻŽā§ āĻĒāĻ°āĻŋāĻāĻžāĻ˛āĻŋāĻ¤ āĻšāĻ¯āĻŧāĨ¤ āĻĒā§āĻ°āĻ¤ā§āĻ¯ā§āĻ āĻāĻā§āĻ°ā§ āĻāĻā§āĻāĻŋāĻ¨ āĻ¯āĻĻāĻŋ āĻā§āĻ¸ āĻĨā§āĻā§ 1kcal āĻ¤āĻžāĻĒ āĻā§āĻ°āĻšāĻŖ āĻāĻ°ā§ āĻ¤āĻžāĻšāĻ˛ā§ āĻĒā§āĻ°āĻ¤ā§āĻ¯ā§āĻ āĻāĻā§āĻ°ā§ āĻ¤āĻžāĻĒ āĻā§āĻ°āĻžāĻšāĻā§ āĻ¤āĻžāĻĒ āĻŦāĻ°ā§āĻāĻ¨ āĻāĻ°āĻžāĻ° āĻĒāĻ°āĻŋāĻŽāĻžāĻŖ āĻāĻ¤?- 500 kcal
- 1000 cal
- 500 cal
- 10 kcal
Ans. 500 cal
- q āĻĒāĻ°āĻŋāĻŽāĻžāĻŖ āĻāĻ§āĻžāĻ¨ āĻāĻāĻāĻŋ āĻā§āĻŽā§āĻŦāĻ āĻā§āĻˇā§āĻ¤ā§āĻ° \(\overrightarrow{\mathbf{B}}\) āĻāĻ° āĻ¸āĻžāĻĨā§ āĻ¸āĻŽāĻžāĻ¨ā§āĻ¤āĻ°āĻžāĻ˛ā§
\(\overrightarrow{\mathbf{v}}\) āĻŦā§āĻā§ āĻāĻ¤āĻŋāĻļā§āĻ˛āĨ¤ āĻāĻā§āĻ¤ āĻ¸ā§āĻĨāĻžāĻ¨ā§ āĻāĻāĻāĻŋ āĻ¤āĻĄāĻŧāĻŋā§āĻā§āĻˇā§āĻ¤ā§āĻ° \(\overrightarrow{\mathbf{E}}\) āĻĨāĻžāĻāĻ˛ā§ āĻāĻ§āĻžāĻ¨ā§āĻ° āĻāĻĒāĻ° āĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻļā§āĻ˛ āĻŦāĻ˛ āĻāĻ¤ āĻšāĻŦā§?- \(\mathrm{q}(\overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})\)
- \(\mathrm{q}(\overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{B}})\)
- \(\mathrm{q} \overrightarrow{\mathrm{E}}\)
- \(q(\vec{E}+\vec{B})\)
Ans. \(\mathrm{q} \overrightarrow{\mathrm{E}}\)
- āĻāĻžāĻāĻā§āĻ° āĻāĻžāĻ° āĻšāĻŋāĻ¸āĻžāĻŦā§ āĻŦā§āĻ¯āĻŦāĻšā§āĻ¤ āĻāĻāĻāĻŋ āĻĒā§āĻ°ā§ āĻāĻžāĻ (āĻĒā§āĻ°āĻ¤āĻŋāĻ¸āĻ°āĻžāĻā§āĻ
1.5) āĻāĻŖā§āĻĄā§āĻ° āĻāĻĒāĻ° āĻĨā§āĻā§ āĻāĻžāĻĄāĻŧāĻž āĻ¨āĻŋāĻā§āĻ° āĻĻāĻŋāĻā§ āĻ¤āĻžāĻāĻžāĻ˛ā§ āĻāĻžāĻāĻā§āĻ° āĻāĻĒāĻ° āĻāĻāĻāĻŋ āĻĻāĻžāĻ āĻāĻžāĻā§āĻ° āĻāĻĒāĻ° āĻĒā§āĻ°āĻžāĻ¨ā§āĻ¤ āĻĨā§āĻā§ 6 cm āĻ¨āĻŋāĻā§ āĻĻā§āĻāĻž āĻ¯āĻžāĻ¯āĻŧāĨ¤ āĻāĻžāĻ āĻāĻŖā§āĻĄāĻāĻŋāĻ° āĻĒā§āĻ°ā§āĻ¤ā§āĻŦ āĻāĻ¤?- 4 cm
- 6 cm
- 9 cm
- 12 cm
Ans. 9 cm
- āĻāĻāĻāĻŋ āĻŦāĻ¸ā§āĻ¤ā§ \(\pi \mathrm{m}\) āĻŦā§āĻ¯āĻžāĻ¸āĻžāĻ°ā§āĻ§ā§āĻ° āĻŦā§āĻ¤ā§āĻ¤āĻžāĻāĻžāĻ° āĻĒāĻĨā§ \(4.0 \mathrm{~m} / \mathrm{s}\) āĻ¸āĻŽāĻĻā§āĻ°ā§āĻ¤āĻŋāĻ¤ā§
āĻā§āĻ°āĻā§āĨ¤ āĻāĻāĻŦāĻžāĻ° āĻā§āĻ°ā§ āĻāĻ¸āĻ¤ā§ āĻŦāĻ¸ā§āĻ¤ā§āĻāĻŋāĻ° āĻāĻ¤ āĻ¸āĻŽāĻ¯āĻŧ āĻ˛āĻžāĻāĻŦā§?- \(2 / \pi^{2} \mathrm{~s}\)
- \(\pi^{2} / 2 \mathrm{~s}\)
- \(\pi / 2 \mathrm{~s}\)
- \(\pi^{2} / 4 \mathrm{~s}\)
Ans. \(\pi^{2} / 2 \mathrm{~s}\)
- 5 m āĻāĻā§āĻāĻ¤āĻž āĻšāĻ¤ā§ āĻāĻāĻāĻŋ āĻŦāĻ˛āĻā§ 20 m/s āĻŦā§āĻā§ āĻ
āĻ¨ā§āĻā§āĻŽāĻŋāĻā§āĻ° āĻ¸āĻžāĻĨā§
30° āĻā§āĻŖā§ āĻāĻĒāĻ°ā§āĻ° āĻĻāĻŋāĻā§ āĻ¨āĻŋāĻā§āĻˇā§āĻĒ āĻāĻ°āĻž āĻšāĻ˛ā§āĨ¤ āĻ¤āĻžāĻšāĻ˛ā§ āĻŦāĻ˛āĻāĻŋāĻ° āĻŦāĻŋāĻāĻ°āĻŖāĻāĻžāĻ˛ āĻāĻ¤?- \(\frac{10+\sqrt{198}}{9.8} \mathrm{~s}\)
- \(\frac{10 \sqrt{198}}{9.8} \mathrm{~s}\)
- \(\frac{10 \pm \sqrt{198}}{9.8} \mathrm{~s}\)
- \(\frac{10 \pm \sqrt{2}}{9.8} \mathrm{~s}\)
Ans. \(\frac{10+\sqrt{198}}{9.8} \mathrm{~s}\)
- 10 cm āĻ˛āĻŽā§āĻŦāĻž āĻ 0.5 cm āĻŦā§āĻ¯āĻžāĻ¸āĻžāĻ°ā§āĻ§ āĻŦāĻŋāĻļāĻŋāĻˇā§āĻ āĻāĻāĻāĻŋ āĻ¤āĻžāĻŽāĻž āĻ āĻāĻāĻāĻŋ
āĻ˛ā§āĻšāĻžāĻ° āĻ¤āĻžāĻ°āĻā§ āĻā§āĻĄāĻŧāĻž āĻ˛āĻžāĻāĻŋāĻ¯āĻŧā§ āĻĻā§āĻ°ā§āĻā§āĻ¯ 20 cm āĻāĻ°āĻž āĻšāĻ˛ā§āĨ¤ āĻā§āĻĄāĻŧāĻž āĻ˛āĻžāĻāĻžāĻ¨ā§ āĻ¤āĻžāĻ°āĻāĻŋāĻā§ āĻŦāĻ˛ āĻĒā§āĻ°ā§ā§āĻ āĻāĻ°ā§ āĻ˛āĻŽā§āĻŦāĻž āĻāĻ°āĻž āĻšāĻ˛ā§āĨ¤ āĻ˛ā§āĻšāĻžāĻ° āĻāĻ¯āĻŧāĻ-āĻāĻ° āĻā§āĻŖāĻžāĻā§āĻ āĻ¤āĻžāĻŽāĻžāĻ° āĻāĻ¯āĻŧāĻāĻ¯āĻŧā§āĻ° āĻā§āĻŖāĻžāĻā§āĻā§āĻ° āĻĻā§āĻāĻā§āĻŖ āĻšāĻ˛ā§ āĻ˛ā§āĻšāĻžāĻ° āĻĻā§āĻ°ā§āĻā§āĻ¯ āĻŦā§āĻĻā§āĻ§āĻŋ āĻ āĻ¤āĻžāĻŽāĻžāĻ° āĻĻā§āĻ°ā§āĻā§āĻ¯ āĻŦā§āĻĻā§āĻ§āĻŋāĻ° āĻ āĻ¨ā§āĻĒāĻžāĻ¤ āĻāĻ¤?- 1:8
- 1:6
- 1:4
- 1:2
Ans. 1:2
- āĻāĻāĻāĻŋ āĻ¸ā§āĻĨāĻŋāĻ° āĻ¤āĻ°āĻā§āĻā§ āĻĒāĻ°āĻĒāĻ° āĻĻā§āĻāĻŋ āĻ¨āĻŋāĻ¸ā§āĻĒāĻ¨ā§āĻĻ āĻŦāĻŋāĻ¨ā§āĻĻā§āĻ° āĻŽāĻ§ā§āĻ¯āĻŦāĻ°ā§āĻ¤ā§ āĻĻā§āĻ°āĻ¤ā§āĻŦ 1m, āĻāĻ° āĻ¤āĻ°āĻā§āĻāĻĻā§āĻ°ā§āĻā§āĻ¯ āĻāĻ¤?
- 25 cm
- 50 cm
- 100 cm
- 200 cm
Ans. 200 cm
- āĻ
ā§āĻ¯āĻžāĻ˛ā§āĻŽāĻŋāĻ¨āĻŋāĻ¯āĻŧāĻžāĻŽ, āĻšāĻŋāĻ˛āĻŋāĻ¯āĻŧāĻžāĻŽ āĻāĻŦāĻ āĻ¸āĻŋāĻ˛āĻŋāĻāĻ¨ā§āĻ° āĻĒāĻžāĻ°āĻŽāĻžāĻŖāĻŦāĻŋāĻ āĻ¸āĻāĻā§āĻ¯āĻž āĻ¯āĻĨāĻžāĻā§āĻ°āĻŽā§ 13, 2 āĻāĻŦāĻ 14 āĻšāĻ˛ā§, \(_{13} \mathbf{A l}^{27}+_{2}\mathbf{H e}^{4} \rightarrow _{14}\mathbf{S i}^{28}+()\) āĻ¨āĻŋāĻāĻā§āĻ˛āĻŋāĻ¯āĻŧāĻžāĻ° āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻ¤ā§ āĻ
āĻ¨ā§āĻĒāĻ¸ā§āĻĨāĻŋāĻ¤ āĻāĻŖāĻž āĻā§āĻ¨āĻāĻŋ?
- an \(\alpha\) particle
- an electron
- a positron
- a proton
Ans. āĻĒā§āĻ°āĻļā§āĻ¨āĻāĻŋ āĻā§āĻ˛ āĻāĻā§āĨ¤
āĻ°āĻ¸āĻžā§āĻ¨
-
āĻĒā§āĻ°ā§āĻāĻŋāĻ¨ āĻ
āĻŖā§āĻ° āĻŽāĻ§ā§āĻ¯ā§ āĻ
ā§āĻ¯āĻžāĻŽāĻžāĻāĻ¨ā§ āĻāĻ¸āĻŋāĻĄā§āĻ° āĻ
āĻŖā§āĻ¸āĻŽā§āĻš āĻ¯ā§ āĻŦāĻ¨ā§āĻ§āĻ¨ āĻĻā§āĻŦāĻžāĻ°āĻž
āĻ¯ā§āĻā§āĻ¤ āĻĨāĻžāĻā§-- Glycosidic bond
- Peptide bond
- Hydrogen bond
- Metallic bond
Ans. Peptide bond
-
āĻ¨āĻŋāĻŽā§āĻ¨ā§āĻ° āĻā§āĻ¨āĻāĻŋāĻā§ āĻ¸āĻžāĻ§āĻžāĻ°āĻŖāĻ¤ āĻ¤āĻ°āĻ˛-āĻ¤āĻ°āĻ˛ āĻā§āĻ°ā§āĻŽāĻžāĻā§āĻā§āĻ°āĻžāĻĢāĻŋ āĻŦāĻ˛ā§?
- āĻā§āĻ¯āĻžāĻ¸ āĻā§āĻ°ā§āĻŽāĻžāĻā§āĻā§āĻ°āĻžāĻĢāĻŋ
- āĻāĻžāĻāĻ āĻā§āĻ°ā§āĻŽāĻžāĻā§āĻā§āĻ°āĻžāĻĢāĻŋ
- āĻāĻ˛āĻžāĻŽ āĻā§āĻ°ā§āĻŽāĻžāĻā§āĻā§āĻ°āĻžāĻĢāĻŋ
- āĻĒāĻžāĻ¤āĻ˛āĻž āĻ¸ā§āĻ¤āĻ° āĻā§āĻ°ā§āĻŽāĻžāĻā§āĻā§āĻ°āĻžāĻĢāĻŋ
Ans. āĻāĻžāĻāĻ āĻā§āĻ°ā§āĻŽāĻžāĻā§āĻā§āĻ°āĻžāĻĢāĻŋ
- \(\mathrm{Fe}(\mathrm{s})\left|\mathrm{Fe}^{\mathrm{2}^{+}}(\mathrm{aq}) \| \mathrm{Br}_{2}(l) ; \mathrm{Br}^{-}(\mathrm{aq})\right| \mathrm{Pt}(\mathrm{s})\) āĻ¤āĻĄāĻŧāĻŋā§
āĻ°āĻžāĻ¸āĻžāĻ¯āĻŧāĻ¨āĻŋāĻ āĻā§āĻˇā§āĻ° āĻ¸āĻ āĻŋāĻ āĻā§āĻˇ-āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻž āĻā§āĻ¨āĻāĻŋ?- \(\mathrm{Fe}+\mathrm{Br}_{2} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{Br}^{-}\)
- \(\mathrm{Fe}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Br}_{2}\)
- \(\mathrm{Fe}^{2+}+\mathrm{Br}_{2} \rightarrow \mathrm{Fe}+2 \mathrm{Br}^{-}\)
- \(\mathrm{Fe} \rightarrow \mathrm{Fe}^{3+}+2 \mathrm{Br}^{-}\)
Ans. \(\mathrm{Fe}+\mathrm{Br}_{2} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{Br}^{-}\)
- āĻ¨āĻŋāĻŽā§āĻ¨ā§āĻ° āĻā§āĻ¨ āĻ¯ā§āĻāĻāĻŋ āĻā§āĻ¯āĻžāĻŽāĻŋāĻ¤āĻŋāĻ āĻ¸āĻŽāĻžāĻŖā§āĻ¤āĻž āĻĒā§āĻ°āĻĻāĻ°ā§āĻļāĻ¨ āĻāĻ°ā§?
- \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\)
- \(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}\)
- \(\left(\mathrm{CH}_{5}\right)_{2} \mathrm{NH}\)
- \(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}\)
Ans. \(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}\)
- āĻāĻ°ā§āĻĻā§āĻ° āĻŦāĻžāĻ¤āĻžāĻ¸ā§āĻ° āĻ¸āĻāĻ¸ā§āĻĒāĻ°ā§āĻļā§ āĻā§āĻ¯āĻžāĻ˛āĻ¸āĻŋāĻ¯āĻŧāĻžāĻŽ āĻāĻžāĻ°ā§āĻŦāĻžāĻāĻĄ āĻ¨āĻŋāĻŽā§āĻ¨ā§āĻ° āĻā§āĻ¨ āĻ¯ā§āĻāĻāĻŋ
āĻā§āĻĒāĻ¨ā§āĻ¨ āĻāĻ°ā§?- Ethanal
- Ethane
- Ethyne
- Ethene
Ans. Ethyne
- āĻāĻ¤ā§āĻ¤ā§āĻāĻŋāĻ¤ āĻ
āĻŦāĻ¸ā§āĻĨāĻžāĻ¯āĻŧ āĻšāĻžāĻāĻĄā§āĻ°ā§āĻā§āĻ¨ āĻĒāĻ°āĻŽāĻžāĻŖā§āĻ° āĻā§āĻ¯āĻŧāĻžāĻ¨ā§āĻāĻžāĻŽ āĻ¸āĻāĻā§āĻ¯āĻž
n = 4,l= 1 āĻŦāĻŋāĻļāĻŋāĻˇā§āĻ āĻ āĻ°āĻŦāĻŋāĻāĻžāĻ˛āĻāĻŋ āĻāĻŋ?- s orbital
- p orbital
- \(\mathrm{d}_{\mathrm{Z}}^{2}\) orbital
- \(\mathrm{d}_{\mathrm{x}}^{2}-\mathrm{y}^{2}\) orbital
Ans. p orbital
- \(\mathrm{CH}_{3}-\mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)-\mathrm{CH}_{2}-\mathrm{CHBr}-\mathrm{CHCl}-\mathrm{CH}_{3}\)āĻ¯ā§ā§āĻāĻāĻŋāĻ° IUPAC āĻ¨āĻžāĻŽ āĻšāĻ˛ā§-
- 2-āĻā§āĻ˛ā§āĻ°ā§-3-āĻŦā§āĻ°ā§āĻŽā§-5-āĻāĻĨāĻžāĻāĻ˛āĻšā§āĻā§āĻ¸ā§āĻ¨
- 2-āĻā§āĻ˛ā§āĻ°ā§-3-āĻŦā§āĻ°ā§āĻŽā§-5-āĻŽāĻŋāĻĨāĻžāĻāĻ˛āĻšā§āĻĒāĻā§āĻ¨
- 3-āĻŦā§āĻ°ā§āĻŽā§-2-āĻā§āĻ˛ā§āĻ°ā§-5-āĻāĻĨāĻžāĻāĻ˛āĻšā§āĻā§āĻ¸ā§āĻ¨
- 3-āĻŦā§āĻ°ā§āĻŽā§-2-āĻā§āĻ˛ā§āĻ°ā§-5-āĻŽāĻŋāĻĨāĻžāĻāĻ˛āĻšā§āĻĒāĻā§āĻ¨
Ans. 3-āĻŦā§āĻ°ā§āĻŽā§-2-āĻā§āĻ˛ā§āĻ°ā§-5-āĻŽāĻŋāĻĨāĻžāĻāĻ˛āĻšā§āĻĒāĻā§āĻ¨
- āĻāĻžāĻ°ā§āĻŦāĻ¨ āĻŽā§āĻ˛ āĻšā§āĻ°āĻž āĻ āĻā§āĻ°āĻžāĻĢāĻžāĻāĻ-āĻ āĻāĻŋāĻ¨ā§āĻ¨āĻ°ā§āĻĒāĨ¤ āĻāĻĻā§āĻ° āĻā§āĻˇā§āĻ¤ā§āĻ°ā§ āĻā§āĻ¨ āĻāĻā§āĻ¤āĻŋāĻāĻŋ
āĻ¸āĻ¤ā§āĻ¯ āĻ¨āĻ¯āĻŧ?- āĻāĻāĻ¯āĻŧā§āĻ āĻāĻžāĻ°ā§āĻŦāĻ¨ āĻŽā§āĻ˛ āĻĻā§āĻŦāĻžāĻ°āĻž āĻāĻ āĻŋāĻ¤āĨ¤
- āĻšā§āĻ°āĻž āĻ āĻā§āĻ°āĻžāĻĢāĻžāĻāĻā§ āĻāĻžāĻ°ā§āĻŦāĻ¨ āĻĒāĻ°āĻŽāĻžāĻŖā§āĻ° āĻ¸āĻāĻāĻ°āĻžāĻ¯āĻŧāĻ¨ āĻšāĻ˛ā§ āĻ¯āĻĨāĻžāĻā§āĻ°āĻŽā§ \(\mathrm{sp}^{3}\) āĻ \(\mathrm{sp}^{2}\)
- āĻāĻāĻ¯āĻŧā§āĻ° āĻŦāĻŋāĻĻā§āĻ¯ā§ā§ āĻĒāĻ°āĻŋāĻŦāĻžāĻšāĻŋāĻ¤āĻž āĻāĻŋāĻ¨ā§āĻ¨āĨ¤
- āĻāĻāĻ¯āĻŧā§āĻ° āĻĻāĻšāĻ¨ āĻ¤āĻžāĻĒ āĻāĻāĻāĨ¤
Ans. āĻāĻāĻ¯āĻŧā§āĻ° āĻĻāĻšāĻ¨ āĻ¤āĻžāĻĒ āĻāĻāĻāĨ¤
- MRI āĻ¯āĻ¨ā§āĻ¤ā§āĻ°ā§āĻ° āĻ¸āĻžāĻšāĻžāĻ¯ā§āĻ¯ā§ āĻŽāĻžāĻ¨āĻŦāĻĻā§āĻšā§āĻ° āĻ°ā§āĻ āĻ¨āĻŋāĻ°ā§āĻŖāĻ¯āĻŧā§ āĻā§āĻ¨ āĻŽā§āĻ˛āĻāĻŋāĻ°
āĻā§āĻŽāĻŋāĻāĻž āĻ°āĻ¯āĻŧā§āĻā§?- Neon
- Oxygen
- Hydrogen
- Silicon
Ans. Hydrogen
- āĻ¨āĻŋāĻŽā§āĻ¨ā§āĻ° āĻā§āĻ¨ āĻĒāĻ°ā§āĻā§āĻˇāĻžāĻāĻŋ āĻ¸āĻžāĻ˛āĻĢāĻŋāĻāĻ°āĻŋāĻ āĻāĻ¸āĻŋāĻĄ āĻ āĻ¨āĻžāĻāĻā§āĻ°āĻŋāĻ
āĻāĻ¸āĻŋāĻĄā§āĻ° āĻŽāĻ§ā§āĻ¯ā§ āĻĒāĻžāĻ°ā§āĻĨāĻā§āĻ¯ āĻāĻ°āĻ¤ā§ āĻŦā§āĻ¯āĻŦāĻšāĻžāĻ° āĻāĻ°āĻž āĻ¯āĻžāĻ¯āĻŧ?- āĻ¸āĻžāĻ°ā§āĻŦāĻāĻ¨ā§āĻ¨ āĻ¨āĻŋāĻ°ā§āĻĻā§āĻļāĻ āĻĻāĻŋāĻ¯āĻŧā§ āĻĒāĻ°ā§āĻā§āĻˇāĻž
- āĻ¸ā§āĻĄāĻŋāĻ¯āĻŧāĻžāĻŽ āĻāĻžāĻ°ā§āĻŦāĻ¨ā§āĻ āĻā§āĻāĻĄāĻŧāĻž āĻ¯ā§āĻā§āĨ¤
- āĻŽā§āĻ¯āĻžāĻāĻ¨ā§āĻļāĻŋāĻ¯āĻŧāĻžāĻŽ āĻĢāĻŋāĻ¤āĻž āĻ¯ā§āĻā§āĨ¤
- āĻŦā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻŽ āĻ¨āĻžāĻāĻā§āĻ°ā§āĻ āĻĻā§āĻ°āĻŦāĻŖ āĻ¯ā§āĻā§āĨ¤
Ans. āĻŦā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻŽ āĻ¨āĻžāĻāĻā§āĻ°ā§āĻ āĻĻā§āĻ°āĻŦāĻŖ āĻ¯ā§āĻā§āĨ¤
- āĻ¨āĻžāĻāĻā§āĻ°ā§āĻ āĻ
ā§āĻ¯āĻžāĻ¨āĻžāĻ¯āĻŧāĻ¨ā§ āĻāĻ¯āĻŧāĻāĻŋ āĻāĻ˛ā§āĻāĻā§āĻ°āĻ¨ āĻ°āĻ¯āĻŧā§āĻā§?
- 19
- 31
- 23
- 32
Ans. 32
- 50 mL āĻ¤āĻ°āĻ˛ āĻĒāĻ°āĻŋāĻŽāĻžāĻĒ āĻāĻ°āĻ¤ā§ āĻ¨āĻŋāĻŽā§āĻ¨ā§āĻ° āĻā§āĻ¨āĻāĻŋāĻ° āĻŦā§āĻ¯āĻŦāĻšāĻžāĻ° āĻ¯āĻĨāĻžāĻ°ā§āĻĨ?
- āĻĒāĻŋāĻĒā§āĻ
- āĻŽāĻžāĻĒāĻ¨ āĻ¸āĻŋāĻ˛āĻŋāĻ¨ā§āĻĄāĻžāĻ°
- āĻŦā§āĻ°ā§āĻ
- āĻāĻ¯āĻŧāĻ¤āĻ¨āĻŋāĻ āĻĢā§āĻ˛āĻžāĻā§āĻ¸
Ans. āĻŽāĻžāĻĒāĻ¨ āĻ¸āĻŋāĻ˛āĻŋāĻ¨ā§āĻĄāĻžāĻ°
-
0.98g \(\mathrm{H}_{2} \mathrm{SO}_{4}\) āĻŦā§āĻ¯āĻŦāĻšāĻžāĻ° āĻāĻ°ā§ 1.0L āĻāĻ˛ā§ā§ āĻĻā§āĻ°āĻŦāĻŖ āĻ¤ā§āĻ°āĻŋ āĻāĻ°āĻž āĻšāĻ˛ā§āĨ¤ āĻĻā§āĻ°āĻŦāĻŖāĻāĻŋāĻ° āĻāĻ¨āĻŽāĻžāĻ¤ā§āĻ°āĻž āĻāĻ¤?
- 0.1 M
- 0.1 m
- 0.01 M
- 0.01 m
Ans. 0.01 M
- \(\mathrm{BaMnF}_{4}\) āĻāĻŦāĻ \(\mathrm{Li}_{2} \mathrm{MgFeF}_{6}\) āĻ¯ā§āĻāĻĻā§āĻŦāĻ¯āĻŧā§ Mn āĻ Fe āĻāĻ° āĻāĻžāĻ°āĻŖ
āĻ¸āĻāĻā§āĻ¯āĻž āĻ¯āĻĨāĻžāĻā§āĻ°āĻŽā§-- +2,+2
- +5,+2
- +4,+3
- +5,+3
Ans. +2,+2
-
āĻā§āĻ¨āĻāĻŋ āĻ
āĻŽā§āĻ˛ā§ā§ āĻāĻ˛ā§āĻ¯āĻŧ āĻĻā§āĻ°āĻŦāĻŖ āĻ¤ā§āĻ°āĻŋ āĻāĻ°ā§?
- \(\mathrm{Na}_{2} \mathrm{O}\)
- \(\mathrm{ZnO}\)
- \(\mathrm{Al}_{2} \mathrm{O}_{3}\)
- \(\mathrm{CO}_{2}\)
Ans. \(\mathrm{CO}_{2}\)
āĻāĻā§āĻāĻ¤āĻ° āĻāĻŖāĻŋāĻ¤
-
\(A=\left(\begin{array}{ll}3 & -4 \\ 2 & -3\end{array}\right)\) āĻšāĻ˛ā§, \(\operatorname{det}\left(2 \mathrm{~A}^{-1}\right)\) āĻāĻ° āĻŽāĻžāĻ¨ āĻšāĻ˛ā§ –
- \(\frac{1}{4}\)
- \(-4\)
- \(4\)
- \(-\frac{1}{4}\)
Ans. \(-4\)
- āĻ¯āĻĻāĻŋ \(f(x)=x^{2}-2|x|\) āĻāĻŦāĻ \(g(x)=x^{2}+1\) āĻšāĻ¯āĻŧ, āĻ¤āĻžāĻšāĻ˛ā§ \(g(f(-2))\)
āĻāĻ° āĻŽāĻžāĻ¨ āĻāĻ¤?- 0
- 1
- -1
- 5
Ans. 1
- \(\frac{1+i}{1-i}\) āĻāĻ° āĻĒāĻ°āĻŽ āĻŽāĻžāĻ¨ āĻšāĻ˛ā§-
- 0
- 1
- \(\sqrt{2}\)
- i
Ans. 1
-
\(\underset {x \rightarrow -\infty} {\overset { } {\mathrm lim} } \frac{\sqrt{x^{2}+2 x}}{-x}\) āĻāĻ° āĻŽāĻžāĻ¨ āĻšāĻ˛ā§-
- 1
- \(\infty\)
- \(-\infty\)
- -1
Ans. -1
- (4, 3) āĻā§āĻ¨ā§āĻĻā§āĻ°āĻŦāĻŋāĻļāĻŋāĻˇā§āĻ āĻāĻŦāĻ 5x – 12y + 3 = 0 āĻ¸āĻ°āĻ˛āĻ°ā§āĻāĻžāĻā§
āĻ¸ā§āĻĒāĻ°ā§āĻļ āĻāĻ°ā§ āĻāĻŽāĻ¨ āĻŦā§āĻ¤ā§āĻ¤ā§āĻ° āĻ¸āĻŽā§āĻāĻ°āĻŖ āĻā§āĻ¨āĻāĻŋ?- \(x^{2}+y^{2}+8 x-6 y+24=0\)
- \(x^{2}+y^{2}-8 x-6 y+24=0\)
- \(x^{2}+y^{2}+8 x+6 y+24=0\)
- \(x^{2}+y^{2}-8 x-6 y-24=0\)
Ans. \(x^{2}+y^{2}-8 x-6 y+24=0\)
- \(\overrightarrow{\mathbf{b}}=6 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-6 \hat{k}\) āĻā§āĻā§āĻāĻ° āĻŦāĻ°āĻžāĻŦāĻ° \(\overrightarrow{\mathbf{a}}=\mathbf{2} \hat{\mathbf{i}}-\mathbf{2} \hat{\mathbf{j}}+\hat{\mathbf{k}}\) āĻā§āĻā§āĻāĻ°ā§āĻ°
āĻāĻĒāĻžāĻāĻļ āĻšāĻ˛ā§-- \(\frac{8}{121} \overrightarrow{\mathrm{b}}\)
- \(\frac{-8}{121} \overrightarrow{\mathrm{b}}\)
- \(\frac{8}{121} \overrightarrow{\mathrm{a}}\)
- \(\frac{-8}{121} \vec{a}\)
Ans. \(\frac{-8}{121} \overrightarrow{\mathrm{b}}\)
- ‘GEOMETRY’ āĻļāĻŦā§āĻĻāĻāĻŋāĻ° āĻŦāĻ°ā§āĻŖāĻā§āĻ˛ā§āĻ° āĻ¸āĻŦāĻā§āĻ˛ā§ āĻāĻāĻ¤ā§āĻ°ā§ āĻ¨āĻŋāĻ¯āĻŧā§āĨ¤
āĻāĻ¤ āĻĒā§āĻ°āĻāĻžāĻ°ā§ āĻ¸āĻžāĻāĻžāĻ¨ā§ āĻ¯āĻžāĻ¯āĻŧ āĻ¯ā§āĻ¨ āĻĒā§āĻ°āĻĨāĻŽ āĻ āĻļā§āĻˇ āĻ āĻā§āĻˇāĻ° ‘E’ āĻĨāĻžāĻā§?- 360
- 20160
- 720
- 30
Ans. 720
- \(\left(2 x+\frac{1}{8 x}\right)^{8}\) āĻāĻ° āĻŦāĻŋāĻ¸ā§āĻ¤ā§āĻ¤āĻŋāĻ¤ā§ x āĻŦāĻ°ā§āĻāĻŋāĻ¤ āĻĒāĻĻā§āĻ° āĻŽāĻžāĻ¨ āĻšāĻ˛ā§-
- \(\frac{70}{81}\)
- 520
- \(\frac{35}{128}\)
- \(\frac{7}{512}\)
Ans. \(\frac{35}{128}\)
- \(25 x^{2}+16 y^{2}=400\) āĻāĻĒāĻŦā§āĻ¤ā§āĻ¤ā§āĻ° āĻā§āĻā§āĻ¨ā§āĻĻā§āĻ°āĻŋāĻāĻ¤āĻž āĻāĻ¤?
- \(\frac{2}{3}\)
- \(\frac{4}{5}\)
- \(\frac{3}{4}\)
- \(\frac{3}{5}\)
Ans. \(\frac{3}{5}\)
- \(\cot \left(\sin ^{-1} \frac{1}{2}\right)=?\)
- \(\frac{1}{\sqrt{3}}\)
- \(\frac{\sqrt{3}}{2}\)
- \(\sqrt{3}\)
- \(\frac{2}{\sqrt{3}}\)
Ans. \(\sqrt{3}\)
- [0, 2] āĻŦā§āĻ¯āĻŦāĻ§āĻŋāĻ¤ā§ \(y=x-1\) āĻāĻŦāĻ \(\mathbf{y}=\mathbf{0}\) āĻ°ā§āĻāĻž āĻĻā§āĻŦāĻžāĻ°āĻž āĻāĻŦāĻĻā§āĻ§
āĻ āĻā§āĻāĻ˛ā§āĻ° āĻŽā§āĻ āĻā§āĻˇā§āĻ¤ā§āĻ°āĻĢāĻ˛ āĻāĻ¤?- \(\int_{0}^{2}(x-1) d x\)
- \(\int_{0}^{2}|x-1| d x\)
- \(2 \int_{1}^{2}(1-x) d x\)
- \(2 \int_{0}^{1}(x-1) d x\)
Ans. \(2 \int_{0}^{1}(x-1) d x\)
-
\(\frac{1}{|3 x-1|}>1\) āĻāĻ° āĻ¸āĻŽāĻžāĻ§āĻžāĻ¨ āĻšāĻ˛ā§-
- \(\left(-\infty, \frac{1}{3}\right) \cup(1, \infty)\)
- \(x>\frac{1}{3}\)
- \(0< x<\frac{2}{3}\)
- \(\left(0, \frac{1}{3}\right) \cup\left(\frac{1}{3}, \frac{2}{3}\right)\)
Ans. \(\left(0, \frac{1}{3}\right) \cup\left(\frac{1}{3}, \frac{2}{3}\right)\)
-
\(\int \frac{d x}{\left(e^{x}+e^{-x}\right)^{2}}=?\)
- \(\frac{1}{2\left(\mathrm{e}^{2 \mathrm{x}}+1\right)}+\mathrm{c}\)
- \(\frac{-1}{2\left(\mathrm{e}^{2 \mathrm{x}}+1\right)}+\mathrm{c}\)
- \(\frac{1}{2 e^{2 x}}+c\)
- \(\frac{-1}{2 e^{2 x}}+c\)
Ans. \(\frac{-1}{2\left(\mathrm{e}^{2 \mathrm{x}}+1\right)}+\mathrm{c}\)
- \(f(x)=\sqrt{2-\sqrt{2-x}}\) āĻāĻ° āĻĄā§āĻŽā§āĻāĻ¨ āĻšāĻ˛ā§-
- \((-\infty, 2)\)
- \((-\infty, \infty)\)
- \((-2, \infty)\)
- \([-2,2]\)
Ans. \([-2,2]\)
- āĻā§āĻ¨ā§ āĻāĻāĻāĻŋ āĻŦāĻŋāĻ¨ā§āĻĻā§āĻ¤ā§ āĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻ°āĻ¤ \(\overrightarrow{\mathbf{p}}\) āĻ \(2 \overrightarrow{\mathbf{p}}\) āĻŦāĻ˛āĻĻā§āĻŦāĻ¯āĻŧā§āĻ° āĻ˛āĻŦā§āĻ§āĻŋ \(\sqrt{7} \overrightarrow{\mathbf{p}}\)
āĻšāĻ˛ā§, āĻ¤āĻžāĻĻā§āĻ° āĻŽāĻ§ā§āĻ¯āĻŦāĻ°ā§āĻ¤ā§ āĻā§āĻŖ āĻāĻ¤?- 30°
- 90°
- 60°
- 180°
Ans. 60°
āĻā§āĻŦāĻŦāĻŋāĻā§āĻāĻžāĻ¨
- āĻĒāĻ¨āĻŋāĻ° āĻ¤ā§āĻ°āĻŋāĻ¤ā§ āĻŦā§āĻ¯āĻŦāĻšā§āĻ¤ āĻāĻ¨āĻāĻžāĻāĻŽā§āĻ° āĻ¨āĻžāĻŽ-
- āĻĒā§āĻĒā§āĻāĻ¨
- āĻ°ā§āĻ¨āĻŋāĻ¨
- āĻā§āĻ¯āĻžāĻāĻžāĻ˛ā§āĻ
- āĻĒā§āĻāĻāĻŋāĻ¨
Ans. āĻ°ā§āĻ¨āĻŋāĻ¨
- āĻļāĻŋāĻāĻžāĻā§āĻˇ āĻ¯ā§ āĻĒāĻ°ā§āĻŦā§āĻ° āĻŦā§āĻļāĻŋāĻˇā§āĻā§āĻ¯?
- āĻāĻĨā§āĻ°ā§āĻĒā§āĻĄāĻž
- āĻ ā§āĻ¯āĻžāĻ¨āĻŋāĻ˛āĻŋāĻĄāĻž
- āĻŽāĻ˛āĻžāĻ¸ā§āĻāĻž
- āĻĒā§āĻ˛āĻžāĻāĻŋāĻšā§āĻ˛āĻŽāĻŋāĻ¨āĻĨā§āĻ¸
Ans. āĻĒā§āĻ˛āĻžāĻāĻŋāĻšā§āĻ˛āĻŽāĻŋāĻ¨āĻĨā§āĻ¸
- āĻŽāĻžāĻ¨āĻŦāĻĻā§āĻšā§ āĻāĻŽāĻŋāĻāĻ¨ā§āĻā§āĻ˛ā§āĻŦāĻŋāĻ¨ā§āĻ° āĻāĻ¤ āĻāĻžāĻ IgG?
- 75%
- 15%
- 10%
- 5%
Ans. 75%
- āĻā§āĻ¨āĻāĻŋ āĻĒāĻ¤ā§āĻ°āĻāĻ°āĻž āĻāĻĻā§āĻāĻŋāĻĻ?
- Pongamia pinnat
- Heritiera fomes
- Shorea robusta
- Ceriops decandra
Ans. Shorea robusta
- āĻā§āĻ¨ āĻšāĻ°āĻŽā§āĻ¨ā§āĻ° āĻā§āĻ¸ āĻĒāĻŋāĻā§āĻāĻāĻžāĻ°āĻŋ āĻā§āĻ°āĻ¨ā§āĻĨāĻŋ āĻ¨āĻ¯āĻŧ?
- āĻā§āĻ¯āĻžāĻ¸ā§āĻĒā§āĻ°ā§āĻ¸āĻŋāĻ¨
- āĻĒā§āĻ°ā§āĻā§āĻ¸ā§āĻā§āĻ°āĻ¨
- āĻĒā§āĻ°ā§āĻ˛āĻžāĻā§āĻāĻŋāĻ¨
- āĻ āĻā§āĻ¸āĻŋāĻāĻ¸āĻŋāĻ¨
Ans. āĻĒā§āĻ°ā§āĻā§āĻ¸ā§āĻā§āĻ°āĻ¨
- āĻŽāĻžāĻ¨āĻŦ āĻāĻŋāĻ¨ā§āĻŽā§ āĻā§āĻˇāĻžāĻ°āĻ-āĻ¯ā§āĻāĻ˛ā§āĻ° āĻ¸āĻāĻā§āĻ¯āĻž-
- ā§Š āĻŽāĻŋāĻ˛āĻŋāĻ¯āĻŧāĻ¨
- ā§Šā§Ļ āĻŽāĻŋāĻ˛āĻŋāĻ¯āĻŧāĻ¨
- ā§Šā§Ļā§Ļ āĻŽāĻŋāĻ˛āĻŋāĻ¯āĻŧāĻ¨
- ā§Šā§Ļā§Ļā§Ļ āĻŽāĻŋāĻ˛āĻŋāĻ¯āĻŧāĻ¨
Ans. ā§Šā§Ļā§Ļā§Ļ āĻŽāĻŋāĻ˛āĻŋāĻ¯āĻŧāĻ¨
- āĻā§āĻ¨ āĻ
ā§āĻ¯āĻžāĻŽāĻžāĻāĻ¨ā§ āĻāĻ¸āĻŋāĻĄā§āĻ° āĻāĻ¨ā§āĻ¯ ā§ĒāĻāĻŋ āĻā§āĻĄ āĻ°āĻ¯āĻŧā§āĻā§?
- āĻ˛āĻŋāĻāĻ¸āĻŋāĻ¨
- āĻāĻ°āĻāĻŋāĻ¨āĻŋāĻ¨
- āĻā§āĻ¯āĻžāĻ˛āĻŋāĻ¨
- āĻā§āĻ°āĻŋāĻĒāĻā§āĻĢā§āĻ¨
Ans. āĻā§āĻ¯āĻžāĻ˛āĻŋāĻ¨
- āĻā§āĻ¨ āĻāĻĻā§āĻāĻŋāĻĻāĻāĻŋ āĻŦāĻžāĻāĻ˛āĻžāĻĻā§āĻļā§ āĻŦāĻŋāĻ˛ā§āĻĒā§āĻ¤āĻĒā§āĻ°āĻžāĻ¯āĻŧ?
- Pteris vittata
- Podocarpus nerifolia
- Cycas revoluta
- Nerium indicum
Ans. Podocarpus nerifolia
- āĻā§āĻ¨ āĻ
āĻā§āĻāĻžāĻŖā§āĻ¤ā§ āĻ
āĻā§āĻ¸āĻŋāĻ¸ā§āĻŽ āĻĻā§āĻāĻž āĻ¯āĻžāĻ¯āĻŧ?
- āĻŽāĻžāĻāĻā§āĻāĻ¨ā§āĻĄā§āĻ°āĻŋāĻ¯āĻŧāĻž
- āĻ¨āĻŋāĻāĻā§āĻ˛āĻŋāĻ¯āĻŧāĻžāĻ¸
- āĻ°āĻžāĻāĻŦā§āĻ¸ā§āĻŽ
- āĻ˛āĻžāĻāĻ¸ā§āĻ¸ā§āĻŽ
Ans. āĻŽāĻžāĻāĻā§āĻāĻ¨ā§āĻĄā§āĻ°āĻŋāĻ¯āĻŧāĻž
- Poaceae āĻā§āĻ¤ā§āĻ°ā§āĻ° āĻāĻĻā§āĻāĻŋāĻĻā§āĻ° āĻĢāĻ˛āĻā§ āĻŦāĻ˛āĻž āĻšāĻ¯āĻŧ-
- āĻŦā§āĻ°āĻŋ
- āĻā§āĻ¯āĻžāĻ°āĻŋāĻāĻĒāĻ¸āĻŋāĻ¸
- āĻĒāĻĄ
- āĻā§āĻ¯āĻžāĻĒāĻ¸ā§āĻ˛
Ans. āĻā§āĻ¯āĻžāĻ°āĻŋāĻāĻĒāĻ¸āĻŋāĻ¸
- āĻŽāĻžāĻ¨ā§āĻˇā§āĻ° āĻŽāĻ¸ā§āĻ¤āĻŋāĻˇā§āĻ āĻ āĻ¸ā§āĻˇā§āĻŽā§āĻ¨āĻžāĻāĻžāĻŖā§āĻĄā§āĻ° āĻāĻŦāĻ°āĻŖ āĻā§āĻ¨āĻāĻŋ?
- āĻŽā§āĻ¨āĻŋāĻ¨āĻā§āĻ¸
- āĻĒā§āĻ°āĻŋāĻā§āĻ¨āĻŋāĻ¯āĻŧāĻžāĻŽ
- āĻĒā§āĻ°āĻŋāĻāĻžāĻ°āĻĄāĻŋāĻ¯āĻŧāĻžāĻŽ
- āĻ¨āĻŋāĻāĻ°ā§āĻāĻžāĻ°āĻĄāĻŋāĻ¯āĻŧāĻžāĻŽ
Ans. āĻŽā§āĻ¨āĻŋāĻ¨āĻā§āĻ¸
- āĻā§āĻ¨ āĻĒā§āĻ°āĻžāĻŖā§āĻ¤ā§ āĻĒā§āĻ˛ā§āĻ¯āĻžāĻāĻ¯āĻŧā§āĻĄ āĻāĻāĻļ āĻ°āĻ¯āĻŧā§āĻā§?
- āĻšāĻžāĻāĻ°
- āĻ¤āĻžāĻ°āĻžāĻŽāĻžāĻ
- āĻāĻāĻŽāĻžāĻ
- āĻāĻžāĻ¤āĻ˛ āĻŽāĻžāĻ
Ans. āĻšāĻžāĻāĻ°
- āĻ
ā§āĻ¯āĻžāĻĄā§āĻ°ā§āĻ¨āĻžāĻ˛ āĻā§āĻ°āĻ¨ā§āĻĨāĻŋ āĻĨā§āĻā§ āĻā§āĻ¨ āĻšāĻ°āĻŽā§āĻ¨ āĻ¨āĻŋāĻāĻ¸ā§āĻ¤ āĻšāĻ¯āĻŧ?
- āĻā§āĻā§āĻāĻ°āĻāĻŋāĻāĻ¯āĻŧā§āĻĄ
- āĻā§āĻ¨āĻžāĻĄā§āĻā§āĻ°āĻĒāĻŋāĻ¨
- āĻĒā§āĻ¯āĻžāĻ°āĻžāĻĨāĻ°āĻŽā§āĻ¨
- āĻā§āĻ¯āĻžāĻ˛āĻ¸āĻŋāĻāĻ¨āĻŋāĻ¨
Ans. āĻā§āĻā§āĻāĻ°āĻāĻŋāĻāĻ¯āĻŧā§āĻĄ
- āĻā§āĻ¨āĻāĻŋāĻ° āĻĒāĻ°āĻŋāĻŦāĻšāĻ¨āĻ¤āĻ¨ā§āĻ¤ā§āĻ° āĻāĻā§, āĻāĻŋāĻ¨ā§āĻ¤ā§ āĻĢā§āĻ˛ āĻšāĻ¯āĻŧ āĻ¨āĻž?
- āĻĨā§āĻ¯āĻžāĻ˛ā§āĻĢāĻžāĻāĻāĻž
- āĻŦā§āĻ°āĻžā§ā§āĻĢāĻžāĻāĻāĻž
- āĻā§āĻ°āĻŋāĻĄā§āĻĢāĻžāĻāĻāĻž
- āĻ¸ā§āĻĒāĻžāĻ°āĻŽāĻžāĻā§āĻĢāĻžāĻāĻāĻž
Ans. āĻā§āĻ°āĻŋāĻĄā§āĻĢāĻžāĻāĻāĻžāĨ¤
- āĻĒāĻ˛āĻŋāĻāĻŋāĻ¨ āĻāĻ° āĻĒā§āĻ°āĻāĻžāĻŦ-
- āĻ¸āĻŽāĻĒā§āĻ°āĻāĻ
- āĻĒā§āĻ°āĻāĻ
- āĻĒā§āĻ°āĻā§āĻāĻ¨ā§āĻ¨
- āĻĒā§āĻā§āĻā§āĻā§āĻ¤
Ans. āĻĒā§āĻā§āĻā§āĻā§āĻ¤
āĻŦāĻžāĻāĻ˛āĻž
-
âāĻāĻāĻŦâ āĻļāĻŦā§āĻĻāĻāĻŋ āĻā§āĻ¨ āĻŦāĻŋāĻĻā§āĻļāĻŋ āĻļāĻŦā§āĻĻ?
- āĻāĻ°āĻŦāĻŋ
- āĻĢāĻ°āĻžāĻ¸āĻŋ
- āĻšāĻŋāĻ¨ā§āĻĻāĻŋ
- āĻāĻ°ā§āĻĻā§
Ans. āĻāĻ°āĻŦāĻŋ
- āĻŖ-āĻ¤ā§āĻŦ āĻŦāĻŋāĻ§āĻžāĻ¨ āĻ
āĻ¨ā§āĻ¯āĻžāĻ¯āĻŧā§ āĻā§āĻ¨āĻāĻŋ āĻ
āĻļā§āĻĻā§āĻ§?
- āĻĻā§āĻ°ā§āĻŖā§āĻ¤āĻŋ
- āĻĻāĻžāĻ°ā§āĻŖ
- āĻŽā§āĻ˛ā§āĻ¯āĻžāĻ¯āĻŧāĻ¨
- āĻŦāĻ°ā§āĻŖ
Ans. āĻĻā§āĻ°ā§āĻŖā§āĻ¤āĻŋ
- ‘āĻŽāĻžāĻ¸āĻŋ-āĻĒāĻŋāĻ¸āĻŋ’ āĻāĻ˛ā§āĻĒā§ āĻāĻšā§āĻ˛āĻžāĻĻāĻŋāĻ° āĻŽā§āĻā§ āĻā§ āĻĻā§āĻāĻ¤ā§ āĻĒāĻžāĻ¯āĻŧ āĻ¨āĻŋāĻ āĻŽā§āĻ¯āĻŧā§āĻ° āĻŽā§āĻā§āĻ° āĻāĻžāĻĒ?
- āĻā§āĻ˛ā§āĻļ
- āĻāĻā§
- āĻ°āĻšāĻŽāĻžāĻ¨
- āĻāĻžāĻ¨āĻžāĻ
Ans. āĻ°āĻšāĻŽāĻžāĻ¨
-
‘āĻŦāĻŋāĻā§āĻˇāĻŖā§āĻ° āĻĒā§āĻ°āĻ¤āĻŋ āĻŽā§āĻāĻ¨āĻžāĻĻ’ āĻāĻŦāĻŋāĻ¤āĻžāĻ¯āĻŧ āĻāĻžāĻā§ āĻŦāĻžāĻ¸āĻŦāĻ¤ā§āĻ°āĻžāĻ¸ āĻŦāĻ˛āĻž
āĻšāĻ¯āĻŧā§āĻā§?- āĻŦāĻŋāĻā§āĻˇāĻŖāĻā§
- āĻ°āĻžāĻŽāĻā§
- āĻ°āĻžāĻŦāĻŖāĻā§
- āĻŽā§āĻāĻ¨āĻžāĻĻāĻā§
Ans. āĻŽā§āĻāĻ¨āĻžāĻĻāĻā§
- ‘āĻ¸āĻŽā§āĻĻā§āĻ°’ āĻļāĻŦā§āĻĻāĻāĻŋāĻ° āĻĒā§āĻ°āĻ¤āĻŋāĻļāĻŦā§āĻĻ-
- āĻ°āĻ¤ā§āĻ¨āĻžāĻāĻ°
- āĻ āĻŽā§āĻŦā§āĻ
- āĻāĻ˛āĻĻ
- āĻŦāĻ°ā§āĻŖ
Ans. āĻ°āĻ¤ā§āĻ¨āĻžāĻāĻ°āĨ¤
- ‘āĻ¨ā§āĻ¯āĻŧāĻžāĻ¯āĻŧāĻŋāĻ’ āĻāĻžāĻā§ āĻŦāĻ˛āĻž āĻšāĻ¯āĻŧ?
- āĻ¨ā§āĻ¤āĻŋāĻŦāĻžāĻ¨āĻā§
- āĻ¯āĻŋāĻ¨āĻŋ āĻ¨ā§āĻ¯āĻžāĻ¯āĻŧāĻļāĻžāĻ¸ā§āĻ¤ā§āĻ° āĻāĻžāĻ¨ā§āĻ¨
- āĻĒāĻŖā§āĻĄāĻŋāĻ¤āĻā§
- āĻ¤āĻžāĻ°ā§āĻāĻŋāĻāĻā§
Ans. āĻ¯āĻŋāĻ¨āĻŋ āĻ¨ā§āĻ¯āĻžāĻ¯āĻŧāĻļāĻžāĻ¸ā§āĻ¤ā§āĻ° āĻāĻžāĻ¨ā§āĻ¨
- āĻā§āĻ¨ āĻļāĻŦā§āĻĻāĻā§āĻā§āĻ āĻļā§āĻĻā§āĻ§?
- āĻ¸āĻŽā§āĻā§āĻ¨, āĻāĻŖā§āĻ , āĻŽāĻžāĻˇā§āĻāĻžāĻ°
- āĻ āĻā§āĻā§āĻ˛āĻŋ, āĻĻāĻ¨ā§āĻĄāĻ¨ā§āĻ¯āĻŧ, āĻāĻŋāĻāĻāĻ°ā§āĻ¤āĻŦā§āĻ¯āĻŦāĻŋāĻŽā§āĻĸāĻŧ
- āĻĒā§āĻ°āĻ¤āĻŋāĻ¯ā§āĻāĻŋāĻ¤āĻž, āĻ¸ā§āĻŦāĻžāĻĻā§āĻļā§āĻ, āĻ¸āĻ¨ā§āĻ¤āĻ°āĻŖ
- āĻ¸āĻšāĻ¯ā§āĻā§, āĻļāĻŋāĻ°āĻā§āĻā§āĻĻ, āĻā§āĻā§āĻāĻ°āĻ¨
Ans. āĻ¸āĻšāĻ¯ā§āĻā§, āĻļāĻŋāĻ°āĻā§āĻā§āĻĻ, āĻā§āĻā§āĻāĻ°āĻ¨
- âāĻŦā§āĻļāĻŋāĻˇā§āĻā§āĻ¯â āĻļāĻŦā§āĻĻāĻāĻŋ āĻāĻ āĻŋāĻ¤ āĻšāĻ¯āĻŧā§āĻā§-
- āĻ¸āĻ¨ā§āĻ§āĻŋāĻ¯ā§āĻā§
- āĻ¸āĻŽāĻžāĻ¸āĻ¯ā§āĻā§
- āĻĒā§āĻ°āĻ¤ā§āĻ¯āĻ¯āĻŧāĻ¯ā§āĻā§
- āĻāĻĒāĻ¸āĻ°ā§āĻāĻ¯ā§āĻā§
Ans. āĻĒā§āĻ°āĻ¤ā§āĻ¯āĻ¯āĻŧāĻ¯ā§āĻā§
- âāĻāĻ āĻžāĻ°ā§ āĻŦāĻāĻ° āĻŦāĻ¯āĻŧāĻ¸â āĻāĻŦāĻŋāĻ¤āĻžāĻ° āĻŽā§āĻ˛āĻ¸ā§āĻ°?
- āĻ¨ā§āĻ¤āĻŋāĻāĻ¤āĻž
- āĻŦāĻŋāĻŦā§āĻāĻŦā§āĻ§
- āĻ āĻĻāĻŽā§āĻ¯ āĻ¤āĻžāĻ°ā§āĻŖā§āĻ¯āĻļāĻā§āĻ¤āĻŋ
- āĻā§āĻ°ā§āĻ¤āĻž
Ans. āĻ āĻĻāĻŽā§āĻ¯ āĻ¤āĻžāĻ°ā§āĻŖā§āĻ¯āĻļāĻā§āĻ¤āĻŋ
- āĻā§āĻ¨āĻāĻŋ āĻ§ā§āĻŦāĻ¨ā§āĻ¯āĻžāĻ¤ā§āĻŽāĻ āĻļāĻŦā§āĻĻā§āĻ° āĻāĻĻāĻžāĻšāĻ°āĻŖ?
- āĻļā§āĻ¤-āĻļā§āĻ¤
- āĻā§āĻŽ-āĻā§āĻŽ
- āĻā§āĻŦāĻ°āĻā§āĻŦāĻ°
- āĻā§āĻĒāĻāĻžāĻĒ
Ans. āĻā§āĻĒāĻāĻžāĻĒ
- āĻā§āĻ¨ āĻāĻĒāĻ¸āĻ°ā§āĻāĻāĻŋ āĻāĻŋāĻ¨ā§āĻ¨āĻžāĻ°ā§āĻĨā§ āĻĒā§āĻ°āĻ¯ā§āĻā§āĻ¤?
- āĻĒā§āĻ°āĻ¤āĻŋāĻĒāĻā§āĻˇ
- āĻĒā§āĻ°āĻ¤āĻŋāĻĻā§āĻŦāĻ¨ā§āĻĻā§āĻŦā§
- āĻĒā§āĻ°āĻ¤āĻŋāĻŦāĻŋāĻŽā§āĻŦ
- āĻĒā§āĻ°āĻ¤āĻŋāĻŦāĻžāĻĻ
Ans. āĻĒā§āĻ°āĻ¤āĻŋāĻŦāĻŋāĻŽā§āĻŦ
- ‘āĻ¤ā§āĻŽāĻžāĻ° āĻāĻĨāĻžāĻā§āĻ˛āĻŋ āĻāĻžāĻ°āĻŋ āĻ¸ā§āĻļāĻŋāĻ¯āĻŧāĻžāĻ˛āĻŋāĻ¸ā§āĻāĻŋāĻ’āĨ¤ āĻ āĻāĻā§āĻ¤āĻŋ āĻāĻžāĻ°
āĻāĻĻā§āĻĻā§āĻļā§ āĻāĻā§āĻāĻžāĻ°āĻŋāĻ¤ āĻšāĻ¯āĻŧā§āĻā§?- āĻāĻŽāĻ˛āĻžāĻāĻžāĻ¨ā§āĻ¤
- āĻŦāĻā§āĻāĻŋāĻŽāĻāĻ¨ā§āĻĻā§āĻ°
- āĻŽāĻžāĻ°ā§āĻāĻžāĻ°
- āĻĒā§āĻ°āĻ¸āĻ¨ā§āĻ¨
Ans. āĻŽāĻžāĻ°ā§āĻāĻžāĻ°
- āĻāĻžāĻ°āĻŽāĻžāĻāĻā§āĻ˛ā§āĻ° āĻ
āĻ¨ā§āĻ¸āĻ¨ā§āĻ§āĻžāĻ¨ā§ āĻ°ā§āĻļāĻŽāĻŋ āĻ°ā§āĻŽāĻžāĻ˛ āĻ¤ā§āĻ°āĻŋāĻ° āĻā§āĻˇā§āĻ¤ā§āĻ° āĻšāĻŋāĻ¸ā§āĻŦā§
āĻā§āĻ¨ āĻāĻ˛āĻžāĻāĻž āĻāĻŦāĻŋāĻˇā§āĻā§āĻ¤ āĻšāĻ¯āĻŧā§āĻā§?- āĻŦā§āĻ°āĻā§āĻŽ
- āĻŦāĻ°ā§āĻ§āĻŽāĻžāĻ¨
- āĻ°āĻžāĻāĻļāĻžāĻšā§
- āĻŽā§āĻ°ā§āĻļāĻŋāĻĻāĻžāĻŦāĻžāĻĻ
Ans. āĻŽā§āĻ°ā§āĻļāĻŋāĻĻāĻžāĻŦāĻžāĻĻ
-
āĻā§āĻ¨āĻāĻŋ āĻ
āĻĒāĻĒā§āĻ°ā§ā§āĻā§āĻ° āĻĻā§āĻˇā§āĻāĻžāĻ¨ā§āĻ¤?
- āĻĒā§āĻ¨āĻāĻĒā§āĻ¨
- āĻā§āĻāĻ˛āĻŋāĻ
- āĻā§āĻ°āĻĨāĻŋāĻ¤
- āĻĒā§āĻ°ā§āĻĨāĻŋāĻ¤
Ans. āĻā§āĻāĻ˛āĻŋāĻ
- ‘āĻāĻŽāĻžāĻ° āĻĒāĻĨ’ āĻĒā§āĻ°āĻŦāĻ¨ā§āĻ§ā§ āĻĒāĻĨāĻĒā§āĻ°āĻĻāĻ°ā§āĻļāĻ āĻā§?
- āĻ§āĻ°ā§āĻŽ
- āĻ¸āĻ¤ā§āĻ¯
- āĻĻā§āĻļ
- āĻ¨ā§āĻ¤āĻž
Ans. āĻ¸āĻ¤ā§āĻ¯
āĻāĻāĻ°ā§āĻāĻŋ
English Read the following passage and answer the questions (1-5)
‘Bacteria’ is the common name of a very large group of one-celled microscopic organism that, we believe, may be the smallest, simplest and perhaps even the very first form of cellular life that evolved on earth. That is why they are observable only under a microscope. There are three main types of bacteria, which are classified according to their shape.
The bacilli are a group of bacteria that occur in the soil and air. They are shaped like rods. If we look at them under a microscope, we find them in motion, they always seem to be rolling or tumbling under the microscope. These bacilli are largely responsible for food spoilage. There is another group of bacteria who tend to grow in chains. They are referred to as the cocci group. A common example of this type is streptococci that causes strep throat. Finally, there is the spiral shaped bacteria called. They look a little like corkscrews, and they are responsible for a number of diseases in humans. Some species of bacteria cause diseases, but mostly bacteria live harmlessly on the skin, in the mouth, and the intestines. In fact, bacteria are very helpful to researchers. Bacteria cells resemble the cells of other life forms in many ways, and may be studied to give us insights.
- Which is the topic of this passage?
- Three major types of bacteria
- How microscopic organisms are mesured
- How bacteria is used for research in genetics
- Diseases caused by bacteria
Ans. Three major types of bacteria
- A similar word for ‘tumble’is â
- order
- arrange
- organize
- spill
Ans. spill
- According to the passage, bacilli are responsible for â
- polluting air
- causing throat diseases
- spoilling food
- spoilling soil
Ans. spoilling food
- According to the text, which characteristic is common
in bacteria?- They have one cell
- They are harmful to humans
- They die quickly
- They die when exposed to air
Ans. They have one cell
- Why are bacteria used in the research study?
- Bacteria live harmlessly
- Bacteria are similar to other life forms
- Bacteria cause many diseases
- Bacteria have cell formations
Ans. Bacteria are similar to other life forms
- Nutritionists still do not understand the nutritional _____
of jackfruits.- favours
- helps
- goods
- benefits
Ans. benefits
- A synonym for ‘compassion’ is _____
- indifference
- cruelty
- yearning
- heartlessness
Ans. yearning
-
As for _____, I prefer to let people make up _____ minds.
- myself, each other’s
- me, their own
- my, theirs
- mine, one another
Ans. me, their own
- The noun of ‘excite’ is-
- excitable
- exciting
- excited
- excitement
Ans. excitement
- Kalam found it hard to get up from bed after the alarm
clock _____ at six a.m.- sent out
- threw out
- went off
- took out
Ans. went off
- Which one is the incorrect spelling?
- deportation
- depriciation
- denunciation
- denomination
Ans. depriciation
- What is the antonym of ‘latent’?
- lurking
- hidden
- obvious
- concealed
Ans. obvious
- Monir is sitting ______ the desk _____ front of the door.
- at, in
- in, on
- on, on
- at, at
Ans. at, in
- Sleeplessness causes problems with our _____ clock.
- botanical
- biological
- natural
- rhythmical
Ans. biological
- The person who has committed such an _____ crime must
be severely punished.- injurious
- unworthy
- uncharitable
- abominable
Ans. abominable
Fill in each blank with appropriate word/words
(Question 6 -15)
āĻ˛āĻŋāĻāĻŋāĻ¤ āĻ āĻāĻļ (ā§§ā§§.ā§¨ā§Ģ x ā§Ē = ā§Ēā§Ģ)
āĻĒāĻĻāĻžāĻ°ā§āĻĨāĻŦāĻŋāĻā§āĻāĻžāĻ¨
āĻĒā§āĻ°āĻļā§āĻ¨-01. āĻ¸āĻŽāĻŦā§āĻā§ āĻāĻ˛āĻ¨ā§āĻ¤ 2500 kg āĻāĻ°ā§āĻ° āĻāĻāĻāĻŋ āĻāĻžāĻĄāĻŧāĻŋ āĻŽāĻ¨ā§āĻĻāĻ¨ā§āĻ° āĻĢāĻ˛ā§
2500 m āĻĻā§āĻ°āĻ¤ā§āĻŦ āĻ
āĻ¤āĻŋāĻā§āĻ°āĻŽ āĻāĻ°āĻžāĻ° āĻĒāĻ° āĻĨā§āĻŽā§ āĻā§āĻ˛āĨ¤ āĻāĻžāĻĄāĻŧāĻŋāĻāĻŋ āĻĨāĻžāĻŽāĻžāĻ¨ā§āĻ° āĻāĻ¨ā§āĻ¯ āĻĒā§āĻ°āĻĻāĻ¤ā§āĻ¤ āĻŦāĻ˛ āĻāĻŦāĻ āĻĨāĻžāĻŽāĻžāĻ° āĻ¸āĻŽāĻ¯āĻŧ āĻ¨āĻŋāĻ°ā§āĻŖāĻ¯āĻŧ āĻāĻ°āĨ¤
āĻ¸āĻŽāĻžāĻ§āĻžāĻ¨:
\(v^{2}=u^{2}-2 a s\) \(\Rightarrow 0=(50)^{2}-2 \times \mathrm{a} \times 2500\) \(\Rightarrow \mathrm{a}=0.5 \mathrm{~ms}^{-2}\) \(\therefore \mathrm{v}=\mathrm{u}-\mathrm{at}\) \(\Rightarrow 0=50-0.5 \times \mathrm{t}\) \(\Rightarrow \mathrm{t}=100 \mathrm{~s}\) (Ans.) \(\therefore \mathrm{F}=\mathrm{ma}=2500 \times 0.5=1250 \mathrm{~N}(\) Ans. \()\) |
\(\mathrm{u}=50 \mathrm{~ms}^{-1}\) \(\mathrm{~m}=2500 \mathrm{~kg}\) \(\mathrm{~s}=2500 \mathrm{~m}\) \(\mathrm{v}=0\) \(\mathrm{~F}=?, \mathrm{t}=?\) |
***āĻĒā§āĻ°āĻļā§āĻ¨āĻāĻŋāĻ° āĻāĻāĻ°ā§āĻāĻŋ āĻāĻžāĻ°ā§āĻ¸āĻ¨ā§ āĻāĻĻāĻŋāĻŦā§āĻ \(\mathbf{u}=\mathbf{5 0} \mathrm{ms}^{-1}\) āĻĻā§āĻāĻ¯āĻŧāĻž āĻāĻā§āĨ¤
āĻĒā§āĻ°āĻļā§āĻ¨-02. āĻāĻāĻāĻ¨ āĻā§āĻˇā§āĻŖ āĻĻā§āĻˇā§āĻāĻŋāĻ¸āĻŽā§āĻĒāĻ¨ā§āĻ¨ āĻŦā§āĻ¯āĻā§āĻ¤āĻŋāĻ° āĻā§āĻā§āĻ° āĻĻā§āĻ° āĻŦāĻŋāĻ¨ā§āĻĻā§āĻ° āĻĻā§āĻ°āĻ¤ā§āĻŦ 50 cmāĨ¤
āĻāĻŋ āĻ§āĻ°āĻ¨ā§āĻ° āĻāĻŦāĻ āĻāĻ¤ āĻā§āĻˇāĻŽāĻ¤āĻžāĻ° āĻ˛ā§āĻ¨ā§āĻ¸ āĻŦā§āĻ¯āĻŦāĻšāĻžāĻ° āĻāĻ°āĻ˛ā§ āĻ¤āĻžāĻ° āĻā§āĻā§āĻ° āĻāĻ āĻā§āĻ°āĻāĻŋ āĻĻā§āĻ° āĻšāĻŦā§?
āĻ¸āĻŽāĻžāĻ§āĻžāĻ¨:
\(\mathrm{P}=\frac{1}{\mathrm{u}}+\frac{1}{\mathrm{~V}}\) \(\Rightarrow P=\frac{1}{\infty}+\frac{1}{(-0.5)}\) \(\Rightarrow P=-2 \mathrm{D}\) āĻāĻŦāĻ āĻ āĻŦāĻ¤āĻ˛ āĻ˛ā§āĻ¨ā§āĻ¸āĨ¤(Ans.) |
\(\mathrm{u}=\infty\) (āĻ
āĻ¸ā§āĻŽ) \(\mathrm{v}=-50 \mathrm{~cm}=-0.5 \mathrm{~m}\) \(\mathrm{P}=?\) |
āĻĒā§āĻ°āĻļā§āĻ¨-03. āĻāĻāĻāĻŋ āĻŦāĻ¸ā§āĻ¤ā§ āĻ¸āĻ°āĻ˛ āĻĻā§āĻ˛ āĻāĻ¤āĻŋāĻ¤ā§ \(\mathbf{x}=6.0 \cos (6 \pi t+\pi) \mathrm{m}\)
āĻ¸āĻŽā§āĻāĻ°āĻŖ āĻ
āĻ¨ā§āĻ¯āĻžāĻ¯āĻŧā§ āĻĻā§āĻ˛āĻā§āĨ¤ āĻŦāĻ¸ā§āĻ¤ā§āĻ° āĻāĻ¤āĻŋāĻ° āĻāĻŽā§āĻĒāĻžāĻā§āĻ āĻāĻ¤? t = 2 s āĻ¸āĻŽāĻ¯āĻŧā§ āĻŦāĻ¸ā§āĻ¤ā§āĻāĻŋāĻ° āĻŦā§āĻ āĻ āĻ¤ā§āĻŦāĻ°āĻŖā§āĻ° āĻŽāĻžāĻ¨ āĻāĻ¤?
āĻ¸āĻŽāĻžāĻ§āĻžāĻ¨:
\(x=6 \cos (6 \pi t+\pi)\) āĻā§
\(\mathrm{x}=\mathrm{A} \cos (\omega \mathrm{t}+\delta)\) āĻāĻ° āĻ¸āĻžāĻĨā§ āĻ¤ā§āĻ˛āĻ¨āĻž āĻāĻ°ā§ āĻĒāĻžāĻ,
\(\omega=6 \pi \Rightarrow 2 \pi \mathrm{f}=6 \pi \Rightarrow \mathrm{f}=3 \mathrm{~Hz}\) (Ans.)
āĻŦā§āĻ:
\(\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=-6 \sin (6 \pi \mathrm{t}+\pi)(6 \pi+0)\)
t=2s āĻ¸āĻŽā§ā§ āĻŦā§āĻ, \(\mathrm{v}=-36 \pi \sin (6 \pi \mathrm{t}+\pi)\)
\(=-36 \pi \sin (12 \pi+\pi)\)
\(=0 \mathrm{~ms}^{-1}\) (Ans.)
āĻ¤ā§āĻŦāĻ°āĻŖ:
\(\mathrm{a}=\frac{\mathrm{d} \mathrm{v}}{\mathrm{dt}}=-36 \pi \cos (6 \pi \mathrm{t}+\pi)(6 \pi+0)\)
\(=-216 \pi^{2} \cos (6 \pi \mathrm{t}+\pi)\)
t=2s āĻ¸āĻŽā§ā§, \(a=-216 \pi^{2} \cos (12 \pi+\pi)\)
\(=-216 \pi^{2} \mathrm{~ms}^{-2}\) (Ans.)
āĻĒā§āĻ°āĻļā§āĻ¨-04. āĻāĻāĻāĻŋ āĻ¸ā§āĻĨāĻŋāĻ° āĻĨā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻŽ āĻ¨āĻŋāĻāĻā§āĻ˛āĻŋāĻ¯āĻŧāĻžāĻ¸ (A = 220, Z = 90) āĻšāĻ¤ā§
\(\mathbf{E}_{\mathbf{0}}\) āĻāĻ¤āĻŋāĻļāĻā§āĻ¤āĻŋāĻ° āĻāĻāĻāĻŋ āĻāĻ˛āĻĢāĻž āĻāĻŖāĻž āĻ¨āĻŋāĻ°ā§āĻāĻ¤ āĻšāĻ¯āĻŧāĨ¤ āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻ¯āĻŧ āĻ°ā§āĻĄāĻŋāĻ¯āĻŧāĻžāĻŽ āĻ¨āĻŋāĻāĻā§āĻ˛āĻŋāĻ¯āĻŧāĻžāĻ¸ā§āĻ° (A = 216, Z = 88) āĻāĻ¤āĻŋāĻļāĻā§āĻ¤āĻŋāĻ° āĻāĻ¤?
āĻ¸āĻŽāĻžāĻ§āĻžāĻ¨:
āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻāĻŋ,
\({ }_{90}^{220} \mathrm{Th} \longrightarrow{ }_{88}^{216} \mathrm{Ra}+{ }_{2}^{4} \mathrm{He}+\) āĻāĻ¤āĻŋāĻļāĻā§āĻ¤āĻŋ
\(E=m c^{2}\) āĻ¸āĻŽā§āĻĒāĻ°ā§āĻ āĻĨā§āĻā§ āĻĒāĻžāĻ,
\(\mathrm{i} . \approx 205424 \mathrm{MeV}\left({ }_{90} \mathrm{Th}^{220}\right)\)
\(\mathrm{ii} . \approx 201000 \mathrm{MeV}\left({ }_{88}^{216} \mathrm{Ra}\right)\)
iii. \(\approx 3757 \mathrm{MeV}\left({ }_{2}^{4} \mathrm{He}\right)\)
āĻ¸ā§āĻ¤āĻ°āĻžāĻ, \(205424 \rightarrow 201000+3757+\) āĻāĻ¤āĻŋāĻļāĻā§āĻ¤āĻŋ āĻ¯ā§āĻšā§āĻ¤ā§ āĻ¸āĻŽā§āĻāĻ°āĻŖā§āĻ° āĻĻā§āĻĒāĻžāĻļā§āĻ° āĻļāĻā§āĻ¤āĻŋ āĻ¸āĻāĻ°āĻā§āĻˇāĻŖāĻļā§āĻ˛ āĻ¨ā§āĻ¤āĻŋ āĻŽā§āĻ¨ā§ āĻāĻ˛ā§, āĻ¸ā§āĻ¤āĻ°āĻžāĻ \(\approx 210 \times\) \(10^{3} \mathrm{MeV}\) āĻļāĻā§āĻ¤āĻŋ āĻšāĻŦā§ \({ }_{88} \mathrm{R}_{\mathrm{a}}\) āĻ¨āĻŋāĻāĻā§āĻ˛āĻŋāĻ¯āĻŧāĻžāĻ¸ā§āĻ° āĻāĻ¨ā§āĻ¯āĨ¤
āĻ°āĻ¸āĻžāĻ¯āĻŧāĻ¨
05. \(\mathbf{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-92.38 \mathrm{~kJ}\)
āĻ¨āĻŋāĻŽā§āĻ¨ā§ āĻĒā§āĻ°āĻĻāĻ¤ā§āĻ¤ āĻĒā§āĻ°āĻļā§āĻ¨āĻā§āĻ˛ā§āĻ° āĻāĻ¤ā§āĻ¤āĻ° āĻĻāĻžāĻāĨ¤
(a) āĻ¸āĻŽāĻ¯āĻŧā§āĻ° āĻ¸āĻžāĻĨā§ \(\mathbf{N}_{\mathbf{2}}\) āĻ \(\mathbf{N H}_{3}\) āĻāĻ° āĻĒāĻ°āĻŋāĻŽāĻžāĻŖā§āĻ° āĻĒāĻ°āĻŋāĻŦāĻ°ā§āĻ¤āĻ¨ āĻāĻŋāĻ¤ā§āĻ°ā§ āĻĻā§āĻāĻžāĻāĨ¤ āĻāĻāĻ¯āĻŧā§āĻ° āĻ¸āĻžāĻĒā§āĻā§āĻˇā§ āĻ¸āĻŽā§āĻŽā§āĻ āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻ° āĻšāĻžāĻ° āĻ˛ā§āĻāĨ¤
āĻāĻ¤ā§āĻ¤āĻ° : āĻ¸āĻŽāĻ¯āĻŧā§āĻ° āĻ¸āĻžāĻĨā§ \(\mathbf{N}_{\mathbf{2}}\) āĻ \(\mathbf{N H}_{3}\) āĻāĻ° āĻĒāĻ°āĻŋāĻŽāĻžāĻŖā§āĻ° āĻĒāĻ°āĻŋāĻŦāĻ°ā§āĻ¤āĻ¨ā§āĻ° āĻāĻŋāĻ¤ā§āĻ° :
\(\mathrm{N}_{2}\) āĻāĻ° āĻ¸āĻžāĻĒā§āĻā§āĻˇā§ āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻ° āĻšāĻžāĻ° \(=\mathrm{K} \times\left[\mathrm{N}_{2}\right] \times\left[\mathrm{H}_{2}\right]^{3}\)
\(\mathrm{NH}_{3}\) āĻāĻ° āĻ¸āĻžāĻĒā§āĻā§āĻˇā§ āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻ° āĻšāĻžāĻ° \(=\mathrm{K} \times\left[\mathrm{NH}_{3}\right]^{2}\)
(b) āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻāĻŋāĻ° āĻ¸āĻžāĻŽā§āĻ¯āĻžāĻŦāĻ¸ā§āĻĨāĻžāĻ° āĻāĻĒāĻ° āĻ¤āĻžāĻĒ āĻ āĻāĻžāĻĒā§āĻ° āĻĒā§āĻ°āĻāĻžāĻŦ āĻā§ āĻšāĻŦā§?
āĻāĻ¤ā§āĻ¤āĻ° :
\(\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})\) \(\Delta \mathrm{H}=-92.38 \mathrm{KJ}\)
āĻ¤āĻžāĻĒāĻŽāĻžāĻ¤ā§āĻ°āĻžāĻ° āĻĒā§āĻ°āĻāĻžāĻŦ : āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻāĻŋ āĻ¤āĻžāĻĒā§ā§āĻĒāĻžāĻĻā§āĨ¤ āĻ˛āĻž āĻļā§āĻ¯āĻžāĻ¤ā§āĻ˛āĻŋāĻ¯āĻŧāĻžāĻ° āĻ¨ā§āĻ¤āĻŋ āĻ
āĻ¨ā§āĻ¸āĻžāĻ°ā§ āĻ¤āĻžāĻĒāĻŽāĻžāĻ¤ā§āĻ°āĻž āĻŦā§āĻĻā§āĻ§āĻŋāĻ¤ā§ āĻ¸āĻŽā§āĻŽā§āĻ āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻ° āĻšāĻžāĻ° āĻšā§āĻ°āĻžāĻ¸ āĻĒāĻžāĻ¯āĻŧāĨ¤ āĻ
āĻ°ā§āĻĨāĻžā§ āĻā§āĻĒāĻžāĻĻāĻ¨ āĻšā§āĻ°āĻžāĻ¸ āĻĒāĻžāĻ¯āĻŧāĨ¤
āĻāĻžāĻĒā§āĻ° āĻĒā§āĻ°āĻāĻžāĻŦ : āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻ¯āĻŧ āĻāĻ¯āĻŧāĻ¤āĻ¨ā§āĻ° āĻšā§āĻ°āĻžāĻ¸ āĻāĻā§ āĻŦāĻ˛ā§ āĻāĻžāĻĒ āĻŦā§āĻĻā§āĻ§āĻŋāĻ¤ā§ āĻ¸āĻŽā§āĻŽā§āĻ āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻ° āĻšāĻžāĻ° āĻŦā§āĻĻā§āĻ§āĻŋ āĻĒāĻžāĻ¯āĻŧ āĻ
āĻ°ā§āĻĨāĻžā§ āĻā§āĻĒāĻžāĻĻāĻ¨ āĻŦāĻžāĻĄāĻŧā§āĨ¤
(c) āĻ¸āĻžāĻŽā§āĻ¯āĻžāĻŦāĻ¸ā§āĻĨāĻž āĻ§ā§āĻ°ā§āĻŦāĻ (K) āĻāĻ° āĻāĻĒāĻ° āĻĒā§āĻ°āĻāĻžāĻŦāĻā§āĻ° āĻā§āĻ¨ āĻĒā§āĻ°āĻāĻžāĻŦ
āĻ°āĻ¯āĻŧā§āĻā§ āĻā§?
āĻāĻ¤ā§āĻ¤āĻ° : āĻ¸āĻžāĻŽā§āĻ¯āĻžāĻŦāĻ¸ā§āĻĨāĻž āĻ§ā§āĻ°ā§āĻŦāĻā§āĻ° (K) āĻāĻĒāĻ° āĻĒā§āĻ°āĻāĻžāĻŦāĻā§āĻ° āĻā§āĻ¨ā§ āĻĒā§āĻ°āĻāĻžāĻŦ āĻ¨ā§āĻ āĨ¤
06. (a) āĻŦā§āĻ° āĻŽāĻĄā§āĻ˛ āĻ
āĻ¨ā§āĻ¸āĻžāĻ°ā§ āĻšāĻžāĻāĻĄā§āĻ°ā§āĻāĻ¨ āĻŽā§āĻ˛ā§āĻ° āĻŦāĻŋāĻāĻŋāĻ°āĻŖ āĻŦāĻ°ā§āĻŖāĻžāĻ˛āĻŋāĻ°
āĻā§āĻĒāĻ¤ā§āĻ¤āĻŋ āĻāĻŋāĻ¤ā§āĻ°ā§āĻ° āĻ¸āĻžāĻšāĻžāĻ¯ā§āĻ¯ā§ āĻĻā§āĻāĻžāĻāĨ¤
āĻāĻ¤ā§āĻ¤āĻ° : āĻ¯āĻāĻ¨ āĻāĻ˛ā§āĻā§āĻā§āĻ°āĻ¨ āĻ¨āĻŋāĻŽā§āĻ¨ āĻļāĻā§āĻ¤āĻŋāĻ¸ā§āĻ¤āĻ° āĻšāĻ¤ā§ āĻāĻā§āĻ āĻļāĻā§āĻ¤āĻŋāĻ¸ā§āĻŦāĻ°ā§ āĻ˛āĻžāĻĢāĻŋāĻ¯āĻŧā§ āĻāĻ˛ā§ āĻ¤āĻāĻ¨ āĻāĻ˛ā§āĻ āĻļāĻā§āĻ¤āĻŋāĻ° āĻļā§āĻˇāĻŖ āĻāĻŦāĻ āĻ¯āĻāĻ¨ āĻāĻā§āĻ āĻļāĻā§āĻ¤āĻŋāĻ¸ā§āĻ¤āĻ° āĻšāĻ¤ā§ āĻ¨āĻŋāĻŽā§āĻ¨ āĻļāĻā§āĻ¤āĻŋāĻ¸ā§āĻ¤āĻ°ā§ āĻ˛āĻžāĻĢāĻŋāĻ¯āĻŧā§ āĻāĻ˛ā§, āĻ¤āĻāĻ¨ āĻāĻ˛ā§āĻ āĻļāĻā§āĻ¤āĻŋāĻ° āĻŦāĻŋāĻāĻŋāĻ°āĻŖ āĻāĻā§āĨ¤ āĻ¯āĻĻāĻŋ āĻĒā§āĻ°āĻĨāĻŽ āĻāĻā§āĻˇāĻĒāĻĨā§ āĻāĻ˛ā§āĻā§āĻā§āĻ°āĻ¨ā§āĻ° āĻļāĻā§āĻ¤āĻŋ \(\mathrm{E}_{1}\) āĻāĻŦāĻ āĻĻā§āĻŦāĻŋāĻ¤ā§āĻ¯āĻŧ āĻāĻā§āĻˇāĻĒāĻĨā§ āĻāĻ˛ā§āĻā§āĻā§āĻ°āĻ¨ā§āĻ° āĻļāĻā§āĻ¤āĻŋ \(\mathrm{E}_{2}\) āĻšāĻ¯āĻŧ, āĻ¤āĻŦā§ āĻŦāĻŋāĻāĻŋāĻ°āĻŋāĻ¤ āĻāĻ˛ā§āĻ° āĻļāĻā§āĻ¤āĻŋ āĻšāĻŦā§ \(\Delta \mathrm{E}=\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right)\)āĨ¤ āĻāĻ āĻļāĻā§āĻ¤āĻŋ āĻ¤āĻĄāĻŧāĻŋā§ āĻā§āĻŽā§āĻŦāĻā§āĻ¯āĻŧ āĻŦāĻŋāĻāĻŋāĻ°āĻŖ āĻšāĻŋāĻ¸ā§āĻŦā§ āĻ¨āĻŋāĻ°ā§āĻāĻ¤ āĻšāĻŦā§ āĨ¤
āĻāĻŋāĻ¤ā§āĻ°: āĻŦā§āĻ°ā§āĻ° āĻĒāĻ°āĻŽāĻžāĻŖā§ āĻŽāĻĄā§āĻ˛ āĻ āĻ°ā§āĻāĻž āĻŦāĻ°ā§āĻŖāĻžāĻ˛āĻŋāĻ° āĻā§āĻ¸āĨ¤
(b) āĻšāĻžāĻāĻĄā§āĻ°ā§āĻā§āĻ¨ āĻŦāĻŋāĻāĻŋāĻ°āĻŖ āĻŦāĻ°ā§āĻŖāĻžāĻ˛āĻŋāĻ° āĻĒāĻžāĻāĻāĻāĻŋ āĻŦāĻ°ā§āĻŖāĻžāĻ˛āĻŋ āĻ¸āĻžāĻ°āĻŋāĻ° āĻ¨āĻžāĻŽ āĻ˛ā§āĻāĨ¤
āĻāĻ¤ā§āĻ¤āĻ° :
- āĻ˛āĻžāĻāĻŽā§āĻ¯āĻžāĻ¨ āĻ¸āĻŋāĻ°āĻŋāĻ (Lymen Series)
- āĻŦāĻžāĻŽāĻžāĻ° āĻ¸āĻŋāĻ°āĻŋāĻ (Balmer Series)
- āĻĒā§āĻ¯āĻžāĻļā§āĻā§āĻ¨ āĻ¸āĻŋāĻ°āĻŋāĻ (Paschen Series)
- āĻŦā§āĻ°āĻžāĻā§āĻ āĻ¸āĻŋāĻ°āĻŋāĻ (Brackett Series)
- āĻĢā§āĻĄ āĻ¸āĻŋāĻ°āĻŋāĻ (Pfund Series)
(c) āĻŦā§āĻ° āĻŽāĻĄā§āĻ˛ āĻāĻ° āĻĻā§āĻāĻŋ āĻ¸ā§āĻŽāĻžāĻŦāĻĻā§āĻ§āĻ¤āĻž āĻ˛ā§āĻ?
āĻāĻ¤ā§āĻ¤āĻ° :
- āĻŦā§āĻ° āĻŽāĻĄā§āĻ˛ H āĻĒāĻ°āĻŽāĻžāĻŖā§ āĻ āĻāĻāĻ āĻāĻ˛ā§āĻā§āĻā§āĻ°āĻ¨āĻŦāĻŋāĻļāĻŋāĻˇā§āĻ āĻāĻ¯āĻŧāĻ¨āĻā§āĻ˛ā§āĻ° (āĻ¯ā§āĻŽāĻ¨: \(\mathrm{He}^{+}, \mathrm{Li}^{2+}\)) āĻŦāĻ°ā§āĻŖāĻžāĻ˛āĻŋāĻ° āĻŦā§āĻ¯āĻžāĻā§āĻ¯āĻž āĻāĻ°āĻ¤ā§ āĻĒāĻžāĻ°āĻ˛ā§āĻ āĻāĻāĻžāĻ§āĻŋāĻ āĻāĻ˛ā§āĻā§āĻā§āĻ°āĻ¨āĻŦāĻŋāĻļāĻŋāĻˇā§āĻ āĻĒāĻ°āĻŽāĻžāĻŖā§āĻā§āĻ˛ā§āĻ° āĻŦāĻ°ā§āĻŖāĻžāĻ˛āĻŋāĻ° āĻŦā§āĻ¯āĻžāĻā§āĻ¯āĻž āĻāĻ°āĻ¤ā§ āĻĒāĻžāĻ°ā§ āĻ¨āĻžāĨ¤
-
āĻāĻ āĻļāĻā§āĻ¤āĻŋāĻ¸ā§āĻ¤āĻ° āĻšāĻ¤ā§ āĻ
āĻĒāĻ° āĻļāĻā§āĻ¤āĻŋāĻ¸ā§āĻ¤āĻ°ā§ āĻāĻ˛ā§āĻā§āĻā§āĻ°āĻ¨ā§āĻ° āĻ¸ā§āĻĨāĻžāĻ¨āĻžāĻ¸ā§āĻ¤āĻ° āĻāĻāĻ˛ā§, āĻŦā§āĻ° āĻĒāĻ°āĻŽāĻžāĻŖā§ āĻŽāĻĄā§āĻ˛ āĻ
āĻ¨ā§āĻ¸āĻžāĻ°ā§ āĻāĻāĻāĻŋ āĻ°ā§āĻāĻž āĻŦāĻ°ā§āĻŖāĻžāĻ˛āĻŋāĻ° āĻ¸ā§āĻˇā§āĻāĻŋ āĻšāĻāĻ¯āĻŧāĻžāĻ° āĻāĻĨāĻž āĨ¤ āĻāĻŋāĻ¨ā§āĻ¤ā§ āĻāĻā§āĻ āĻā§āĻˇāĻŽāĻ¤āĻžāĻ° āĻ¸ā§āĻĒā§āĻāĻā§āĻ°ā§āĻ¸ā§āĻā§āĻĒ āĻĻā§āĻŦāĻžāĻ°āĻž āĻĒāĻ°ā§āĻā§āĻˇāĻžāĻ¯āĻŧ āĻĻā§āĻāĻž āĻ¯āĻžāĻ¯āĻŧ, āĻĒā§āĻ°āĻ¤āĻŋāĻāĻŋ āĻŦāĻ°ā§āĻŖāĻžāĻ˛āĻŋ āĻ°ā§āĻāĻž āĻāĻ¯āĻŧā§āĻāĻāĻŋ āĻ¸ā§āĻā§āĻˇā§āĻŽ āĻ°ā§āĻāĻž āĻĻā§āĻŦāĻžāĻ°āĻž āĻāĻ āĻŋāĻ¤āĨ¤ āĻŦā§āĻ°
āĻŽāĻĄā§āĻ˛ āĻāĻ¸āĻŦ āĻ¸ā§āĻā§āĻˇā§āĻŽ āĻ°ā§āĻāĻž āĻā§āĻĒāĻ¤ā§āĻ¤āĻŋāĻ° āĻāĻžāĻ°āĻŖ āĻŦā§āĻ¯āĻžāĻā§āĻ¯āĻž āĻāĻ°āĻ¤ā§ āĻĒāĻžāĻ°ā§ āĻ¨āĻž āĨ¤
07. (a) āĻŦā§āĻ¨āĻāĻŋāĻ¨ā§āĻ° āĻ
ā§āĻ¯āĻžāĻ˛āĻāĻžāĻāĻ˛āĻŋāĻāĻ°āĻŖā§ āĻŦā§āĻ¯āĻŦāĻšā§āĻ¤ āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻāĻŋāĻ° āĻ¨āĻžāĻŽ
āĻāĻŋ? āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻāĻŋ āĻ˛ā§āĻ āĻ āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻž āĻā§āĻļāĻ˛ āĻĻā§āĻāĻžāĻāĨ¤
āĻāĻ¤ā§āĻ¤āĻ° : āĻŦā§āĻ¨āĻāĻŋāĻ¨ā§āĻ° āĻ
ā§āĻ¯āĻžāĻ˛āĻāĻžāĻāĻ˛āĻŋāĻāĻ°āĻŖā§āĻ° āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻāĻŋāĻ° āĻ¨āĻžāĻŽ āĻĢā§āĻ°āĻŋāĻĄā§āĻ˛ āĻā§āĻ°āĻžāĻĢāĻ āĻ
ā§āĻ¯āĻžāĻ˛āĻāĻžāĻāĻ˛ā§āĻļāĻ¨ āĨ¤ āĻ āĻĒāĻĻā§āĻ§āĻ¤āĻŋāĻ¤ā§ āĻŦā§āĻ¨āĻāĻŋāĻ¨ āĻŦāĻ˛āĻ¯āĻŧā§ āĻ
ā§āĻ¯āĻžāĻ˛āĻāĻžāĻāĻ˛ āĻŽā§āĻ˛āĻ (āĻ¯ā§āĻŽāĻ¨: \(\mathrm{CH}_{3}^{+}\)), āĻ¸āĻ°āĻžāĻ¸āĻ°āĻŋ āĻĒā§āĻ°āĻŦā§āĻļ āĻāĻ°āĻžāĻ¨ā§ āĻšāĻ¯āĻŧāĨ¤ āĻ
āĻ¨āĻžāĻ°ā§āĻĻā§āĻ° \(\mathrm{AlCl}_{3}\) āĻāĻ° āĻāĻĒāĻ¸ā§āĻĨāĻŋāĻ¤āĻŋāĻ¤ā§ āĻŦā§āĻ¨āĻāĻŋāĻ¨ āĻ āĻŽāĻŋāĻĨāĻžāĻāĻ˛ āĻā§āĻ˛ā§āĻ°āĻžāĻāĻĄ āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻž āĻāĻ°ā§ āĻŽāĻŋāĻĨāĻžāĻāĻ˛ āĻā§āĻ¨āĻāĻŋāĻ¨ āĻŦāĻž āĻāĻ˛ā§āĻāĻ¨ āĻā§āĻĒāĻ¨ā§āĻ¨ āĻāĻ°ā§āĨ¤
āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻž āĻā§āĻļāĻ˛ :
(b) 1-āĻŦāĻŋāĻāĻāĻžāĻ¨āĻ˛ āĻāĻ° āĻāĻāĻāĻŋ āĻ
āĻĒāĻ¸āĻžāĻ°āĻŖ āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻž āĻ˛ā§āĻāĨ¤
āĻāĻ¤ā§āĻ¤āĻ° : āĻāĻ˛ā§āĻā§āĻā§āĻ°ā§āĻĢāĻŋāĻ˛āĻŋāĻ āĻ
āĻĒāĻ¸āĻžāĻ°āĻŖ :
\(\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4} \stackrel{\Delta}{\longrightarrow} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}\)
āĻ
ā§āĻ¯āĻžāĻ˛āĻāĻŋāĻ¨
08. (a) āĻ¤ā§āĻ˛ āĻŦāĻž āĻāĻ°ā§āĻŦāĻŋāĻ° āĻ āĻ¸āĻžāĻŦāĻžāĻ¨ā§āĻ° āĻ¸āĻžāĻ§āĻžāĻ°āĻŖ āĻ¸āĻāĻā§āĻ¤ āĻ˛ā§āĻ āĨ¤ āĻ¤ā§āĻ˛ āĻ
āĻāĻ°ā§āĻŦāĻŋāĻ° āĻŽāĻ§ā§āĻ¯ā§ āĻĒāĻžāĻ°ā§āĻĨāĻā§āĻ¯ āĻĨāĻžāĻāĻ˛ā§ āĻ¤āĻž āĻ˛ā§āĻ?
āĻāĻ¤ā§āĻ¤āĻ° : āĻ¤ā§āĻ˛ āĻŦāĻž āĻāĻ°ā§āĻŦāĻŋāĻ° āĻ¸āĻžāĻ§āĻžāĻ°āĻŖ āĻ¸āĻāĻā§āĻ¤:
āĻ¸āĻžāĻŦāĻžāĻ¨ā§āĻ° āĻ¸āĻžāĻ§āĻžāĻ°āĻŖ āĻ¸āĻāĻā§āĻ¤ :
\(\mathrm{R}-\mathrm{COO}-\mathrm{Na}^{+}\)
āĻ¤ā§āĻ˛ āĻ āĻāĻ°ā§āĻŦāĻŋāĻ° āĻŽāĻ§ā§āĻ¯ā§ āĻĒāĻžāĻĨāĻ°ā§āĻ: āĻ¤ā§āĻ˛ āĻ āĻāĻ°ā§āĻŦāĻŋ āĻĻā§āĻā§āĻ āĻā§āĻ°āĻžāĻāĻā§āĻ˛āĻŋāĻ¸āĻžāĻ°āĻžāĻāĻĄāĨ¤ āĻāĻŋāĻ¨ā§āĻ¤ā§ āĻ¤ā§āĻ˛ āĻ āĻāĻ°ā§āĻŦāĻŋ āĻāĻ āĻ¨āĻāĻžāĻ°ā§ āĻĢā§āĻ¯āĻžāĻāĻŋ āĻāĻ¸āĻŋāĻĄā§āĻ° āĻ
āĻ¸āĻŽā§āĻĒā§āĻā§āĻ¤ āĻāĻžāĻ°ā§āĻŦāĻ¨ā§āĻ° āĻ¸āĻāĻā§āĻ¯āĻžāĻ° āĻĒāĻžāĻ°ā§āĻĨāĻā§āĻ¯ āĻĨāĻžāĻā§ āĨ¤ āĻ¤ā§āĻ˛ āĻāĻā§āĻˇ āĻ¤āĻžāĻĒāĻŽāĻžāĻ¤ā§āĻ°āĻžāĻ¯āĻŧ āĻ¤āĻ°āĻ˛ āĻ āĻāĻ°ā§āĻŦāĻŋ āĻāĻā§āĻˇāĻ¤āĻžāĻĒāĻŽāĻžāĻ¤ā§āĻ°āĻžāĻ¯āĻŧ āĻāĻ āĻŋāĻ¨ āĻšāĻ¯āĻŧāĨ¤ āĻ¤ā§āĻ˛ āĻ¸āĻžāĻ§āĻžāĻ°āĻŖāĻ¤ āĻāĻĻā§āĻāĻŋāĻĻ āĻĨā§āĻā§ āĻāĻšāĻ°āĻŋāĻ¤ āĻšāĻ¯āĻŧ āĻ āĻāĻ°ā§āĻŦāĻŋ āĻ¸āĻžāĻ§āĻžāĻ°āĻŖāĻ¤ āĻĒā§āĻ°āĻžāĻŖā§ āĻĨā§āĻā§ āĻāĻšāĻ°āĻŋāĻ¤ āĻšāĻ¯āĻŧāĨ¤
(b) āĻā§āĻ°ā§āĻ¸āĻŋāĻ¨ āĻ āĻ¸āĻ¯āĻŧāĻžāĻŦāĻŋāĻ¨ āĻ¤ā§āĻ˛ā§āĻ° āĻŽāĻ§ā§āĻ¯ā§ āĻĒāĻžāĻ°ā§āĻĨāĻā§āĻ¯ āĻĨāĻžāĻāĻ˛ā§ āĻ¤āĻž āĻ˛ā§āĻ?
āĻāĻ¤ā§āĻ¤āĻ° : āĻ āĻĒāĻ°āĻŋāĻļā§āĻ§āĻŋāĻ¤ āĻĒā§āĻā§āĻ°ā§āĻ˛āĻŋāĻ¯āĻŧāĻžāĻŽā§āĻ° āĻāĻāĻļāĻŋāĻ āĻĒāĻžāĻ¤āĻ¨ā§āĻ° āĻ¸āĻžāĻšāĻžāĻ¯ā§ āĻā§āĻ°ā§āĻ¸āĻŋāĻ¨ āĻĒāĻžāĻāĻ¯āĻŧāĻž āĻ¯āĻžāĻ¯āĻŧāĨ¤ āĻ āĻ°ā§āĻĨāĻžā§ āĻāĻāĻŋ āĻĒā§āĻā§āĻ°ā§āĻ˛āĻŋāĻ¯āĻŧāĻžāĻŽā§āĻ° āĻ āĻāĻļ āĨ¤ āĻāĻāĻžāĻ¨ā§ āĻŦāĻŋāĻāĻŋāĻ¨ā§āĻ¨ āĻšāĻžāĻāĻĄā§āĻ°ā§āĻāĻžāĻ°ā§āĻŦāĻ¨ā§āĻ° āĻ¸āĻāĻŽāĻŋāĻļā§āĻ°āĻŖ āĻĨāĻžāĻā§āĨ¤ āĻ āĻĒāĻ°āĻĻāĻŋāĻā§, āĻ¸āĻ¯āĻŧāĻžāĻŦāĻŋāĻ¨ āĻ¤ā§āĻ˛ āĻāĻāĻāĻŋ āĻāĻĻā§āĻāĻŋāĻĻ āĻ¤ā§āĻ˛, āĻāĻāĻžāĻ¨ā§ āĻŽā§āĻ˛āĻ¤ āĻ āĻ¸ā§āĻĒā§āĻā§āĻ¤ āĻšāĻžāĻāĻĄā§āĻ°ā§āĻāĻžāĻ°ā§āĻŦāĻ¨ āĻĨāĻžāĻā§āĨ¤
āĻāĻŖāĻŋāĻ¤
09. āĻ¯āĻĻāĻŋ \(f(x)=-\sqrt{x-1}\) āĻāĻ° āĻŦāĻŋāĻĒāĻ°ā§āĻ¤ āĻĢāĻžāĻāĻļāĻ¨ \(\mathbf{f}^{-1}(\mathbf{x})\) āĻšāĻ¯āĻŧ āĻ¤āĻŦā§
āĻĻā§āĻāĻžāĻ āĻ¯ā§, \(\mathbf{f}\left(\mathbf{f}^{-1}(\mathbf{x})\right)=\mathbf{f}^{-1}(\mathbf{f}(\mathbf{x}))\)
āĻ¸āĻŽāĻžāĻ§āĻžāĻ¨ : \(f(x)=-\sqrt{x-1}\)
āĻ§āĻ°āĻŋ, \(f(x)=y \Rightarrow x=f^{-1}(y)\)
\(\therefore y=-\sqrt{x-1} \Rightarrow y^{2}=x-1 \Rightarrow x=y^{2}+1 \Rightarrow f^{-1}(y)=y^{2}+1\)
\(\therefore \mathrm{f}^{-1}(\mathrm{x})=\mathrm{x}^{2}+1\)
\(\therefore \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{x})\right)=-\sqrt{\mathrm{x}^{2}+1-1}=\mathrm{x} ; \mathrm{x}<0\)
āĻāĻŦāĻžāĻ°,\(f(x)=-\sqrt{x-1}\)
\(\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=(-\sqrt{\mathrm{x}-1})^{2}+1=\mathrm{x}-1+1=\mathrm{x}\)
\(\therefore \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{x})\right)=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))\)
[Showed]
10. \(1+\frac{3}{1 !}+\frac{5}{2 !}+\frac{7}{3 !}+\ldots \ldots\) āĻ§āĻžāĻ°āĻžāĻāĻŋāĻ° āĻ¯ā§āĻāĻĢāĻ˛ āĻŦā§āĻ° āĻāĻ°āĨ¤
āĻ¸āĻŽāĻžāĻ§āĻžāĻ¨ : \(1+\frac{3}{1 !}+\frac{5}{2 !}+\frac{7}{3 !}+\ldots .\)
āĻ§āĻ°āĻŋ,
\(U_{r}=\frac{2 r-1}{(r-1) !}=\frac{2 r-2+1}{(r-1) !}\)
\(=\frac{2(r-1)}{(r-1) !}+\frac{1}{(r-1) !}=\frac{2}{(r-2) !}+\frac{1}{(r-1) !}\)
\(\therefore \mathrm{S}_{\mathrm{n}}=\sum \mathrm{U}_{\mathrm{r}}=2 \sum \frac{1}{(\mathrm{r}-2) !}+\sum \frac{1}{(\mathrm{r}-1) !}=2 \mathrm{e}+\mathrm{e}=3 \mathrm{e}\)
11. x = 2, x = 4, y = 4 āĻāĻŦāĻ y = 6 āĻ°ā§āĻāĻž āĻĻā§āĻŦāĻžāĻ°āĻž āĻāĻ āĻŋāĻ¤ āĻŦāĻ°ā§āĻāĻā§āĻˇā§āĻ¤ā§āĻ°ā§āĻ°
āĻāĻ°ā§āĻŖāĻĻā§āĻŦāĻ¯āĻŧā§āĻ° āĻ¸āĻŽā§āĻāĻ°āĻŖ āĻŦā§āĻ° āĻāĻ°āĨ¤
āĻ¸āĻŽāĻžāĻ§āĻžāĻ¨ :
AC āĻāĻ°ā§āĻŖā§āĻ° āĻ¸āĻŽā§āĻāĻ°āĻŖ,
\(\frac{x-2}{2-4}=\frac{y-4}{4-6}\)
\(\Rightarrow \frac{x-2}{-2}=\frac{y-4}{-2}\)
\(\Rightarrow x-y+2=0\) (Ans).
BD āĻāĻ°ā§āĻŖā§āĻ° āĻ¸āĻŽā§āĻāĻ°āĻŖ,
\(\frac{x-4}{4-2}=\frac{y-4}{4-6} \Rightarrow \frac{x-4}{2}=\frac{y-4}{-2} \Rightarrow x+y-8=0\) (Ans)
12. āĻ¸āĻŽāĻžāĻ§āĻžāĻ¨ āĻāĻ°: \(\sin \theta+\sin 2 \theta+\sin 3 \theta=1+\cos \theta+\cos 2 \theta\)
āĻ¸āĻŽāĻžāĻ§āĻžāĻ¨:
\(\sin \theta+\sin 2 \theta+\sin 3 \theta=1+\cos \theta+\cos 2 \theta\)
\(\Rightarrow \sin 3 \theta+\sin \theta+\sin 2 \theta=1+\cos 2 \theta+\cos \theta\)
\(\Rightarrow 2 \sin \frac{3 \theta+\theta}{2} \cos \frac{3 \theta-\theta}{2}+\sin 2 \theta=2 \cos ^{2} \theta+\cos \theta\)
\(\Rightarrow 2 \sin 2 \theta \cos \theta+\sin 2 \theta=2 \cos ^{2} \theta+\cos \theta\)
\(\Rightarrow \sin 2 \theta(2 \cos \theta+1)=\cos \theta(2 \cos \theta+1)\)
\(\Rightarrow \sin 2 \theta(2 \cos \theta+1)-\cos \theta(2 \cos \theta+1)=0\)
\(\Rightarrow(2 \cos \theta+1)(\sin 2 \theta-\cos \theta)=0\)
āĻšā§, \(2 \cos \theta+1=0 \Rightarrow 2 \cos \theta=-1\)
\(\Rightarrow \cos \theta=-\frac{1}{2}=\cos \frac{2 \pi}{3} \Rightarrow \theta=2 n \pi \pm \frac{2 \pi}{3}\)
āĻ
āĻĨāĻŦāĻž, \(\sin 2 \theta-\cos \theta=0 \Rightarrow 2 \sin \theta \cos \theta-\cos \theta=0\)
\(\Rightarrow \cos \theta(2 \sin \theta-1)=0 \therefore \cos \theta=0 \Rightarrow \theta=(2 \mathrm{n}+1) \frac{\pi}{2}\)
āĻ
āĻĨāĻŦāĻž, \(2 \sin \theta-1=0 \Rightarrow 2 \sin \theta=1 \Rightarrow \sin \theta=\frac{1}{2}=\sin \frac{\pi}{6}\)
\(\theta=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}\)
\(\theta=n \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}\)
\(\therefore\) āĻ¨āĻŋāĻ°ā§āĻŖā§āĻ¯āĻŧ āĻ¸āĻŽāĻžāĻ§āĻžāĻ¨: \(\theta=2 n \pi \pm \frac{2 \pi}{3},(2 n+1) \frac{\pi}{2}, n \pi+(-1)^{n} \frac{\pi}{6}\) āĻ¯āĻāĻ¨ \(n \in z\)
13. āĻ¸āĻžāĻ˛ā§āĻāĻ¸āĻāĻļā§āĻ˛ā§āĻˇāĻŖā§āĻ° āĻ°āĻžāĻ¸āĻžāĻ¯āĻŧāĻ¨āĻŋāĻ āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻāĻŋ āĻ˛āĻŋāĻ āĻāĻŦāĻ
āĻ¸āĻžāĻ˛ā§āĻāĻ¸āĻāĻļā§āĻ˛ā§āĻˇāĻŖā§āĻ° āĻĻā§āĻāĻāĻŋ āĻā§āĻ°ā§āĻ¤ā§āĻŦāĻĒā§āĻ°ā§āĻŖ āĻāĻžāĻ āĻāĻ˛ā§āĻ˛ā§āĻ āĻāĻ°āĨ¤
āĻāĻ¤ā§āĻ¤āĻ°: āĻ¸āĻžāĻ˛ā§āĻāĻ¸āĻāĻļā§āĻ˛ā§āĻˇāĻŖā§āĻ° āĻ°āĻžāĻ¸āĻžāĻ¯āĻŧāĻ¨āĻŋāĻ āĻŦāĻŋāĻā§āĻ°āĻŋāĻ¯āĻŧāĻž:
āĻ¸āĻžāĻ˛ā§āĻāĻ¸āĻāĻļā§āĻ˛ā§āĻˇāĻŖā§āĻ° āĻĻā§āĻāĻŋ āĻā§āĻ°ā§āĻ¤ā§āĻŦāĻĒā§āĻ°ā§āĻŖ āĻāĻžāĻ āĻ¨āĻŋāĻā§ āĻāĻ˛ā§āĻ˛ā§āĻ āĻāĻ°āĻž āĻšāĻ˛
-
āĻļāĻā§āĻ¤āĻŋāĻ° āĻā§āĻ¸: āĻā§āĻŦāĻāĻāĻ¤ā§āĻ° āĻļāĻā§āĻ¤āĻŋāĻ° āĻāĻāĻŽāĻžāĻ¤ā§āĻ° āĻā§āĻ¸ āĻšāĻ˛āĨ¤
āĻ¸āĻžāĻ˛ā§āĻāĻ¸āĻāĻļā§āĻ˛ā§āĻˇāĻŖ āĻĒā§āĻ°āĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĨ¤ āĻāĻžāĻĻā§āĻ¯ā§āĻ° āĻŽāĻ§ā§āĻ¯ā§ āĻ āĻļāĻā§āĻ¤āĻŋ āĻāĻ¸ā§ āĻ¸ā§āĻ°ā§āĻ¯
āĻšāĻ¤ā§āĨ¤ āĻ¸ā§āĻ°ā§āĻ¯ā§āĻ° āĻ āĻļāĻā§āĻ¤āĻŋ āĻ¸āĻžāĻ˛ā§āĻāĻ¸āĻāĻļā§āĻ˛ā§āĻˇāĻŖ āĻĒā§āĻ°āĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻ¯āĻŧ āĻāĻžāĻĻā§āĻ¯ā§ āĻ°āĻžāĻ¸āĻžāĻ¯āĻŧāĻ¨āĻŋāĻ āĻļāĻā§āĻ¤āĻŋ āĻšāĻŋāĻ¸ā§āĻŦā§ āĻ¸āĻā§āĻāĻŋāĻ¤ āĻĨāĻžāĻā§āĨ¤ āĻāĻžāĻā§āĻ āĻā§āĻŦā§āĻ° āĻ¸āĻāĻ˛ āĻļāĻā§āĻ¤āĻŋāĻ° āĻā§āĻ¸ āĻ āĻĒā§āĻ°āĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĨ¤ -
āĻĒāĻ°āĻŋāĻŦā§āĻļ āĻĒāĻ°āĻŋāĻļā§āĻ§āĻ¨: āĻ¸āĻžāĻ˛ā§āĻāĻ¸āĻāĻļā§āĻ˛ā§āĻˇāĻŖ āĻĒā§āĻ°āĻā§āĻ°āĻŋāĻ¯āĻŧāĻžāĻ¯āĻŧ CO,
āĻļā§āĻˇāĻŋāĻ¤ āĻšāĻ¯āĻŧ āĻāĻŦāĻ 0, āĻā§āĻĒāĻ¨ā§āĻ¨ āĻšāĻ¯āĻŧāĨ¤ āĻĒā§āĻ°āĻžāĻŖāĻŋāĻā§āĻ˛ā§āĻ° āĻāĻ¨ā§āĻ¯ āĻā§āĻˇāĻ¤āĻŋāĻāĻžāĻ°āĻ CO, āĻļā§āĻˇāĻŖ āĻāĻ°ā§ āĻāĻŦāĻ āĻ¸āĻāĻ˛ āĻā§āĻŦā§āĻ° āĻļā§āĻŦāĻ¸āĻ¨ā§āĻ° āĻāĻ¨ā§āĻ¯ N, āĻ¸āĻ°āĻŦāĻ°āĻžāĻš āĻāĻ°ā§ āĻ āĻĒā§āĻ°āĻā§āĻ°āĻŋāĻ¯āĻŧāĻž āĻĒāĻ°āĻŋāĻŦā§āĻļ āĻĒāĻ°āĻŋāĻļā§āĻ§āĻ¨ āĻāĻ°ā§ āĻĨāĻžāĻā§āĨ¤ āĻāĻāĻžāĻŦā§ āĻ¸āĻŦā§āĻ āĻāĻĻā§āĻāĻŋāĻĻā§āĻ° āĻ āĻĒā§āĻ°āĻā§āĻ°āĻŋāĻ¯āĻŧāĻž āĻā§āĻŦāĻāĻāĻ¤āĻā§
āĻ¨āĻŋāĻļā§āĻāĻŋāĻ¤ āĻ§ā§āĻŦāĻāĻ¸ā§āĻ° āĻšāĻžāĻ¤ āĻĨā§āĻā§ āĻ°āĻā§āĻˇāĻž āĻāĻ°ā§āĨ¤
14. āĻāĻāĻŦā§āĻāĻĒāĻ¤ā§āĻ°ā§ āĻāĻĻā§āĻāĻŋāĻĻā§āĻ° āĻŽā§āĻ˛ā§āĻ° āĻ
āĻ¨ā§āĻ¤āĻ°ā§āĻāĻ āĻ¨āĻāĻ¤ āĻļāĻ¨āĻžāĻā§āĻ¤āĻāĻžāĻ°ā§ āĻāĻ¯āĻŧāĻāĻŋ
āĻŦā§āĻļāĻŋāĻˇā§āĻā§āĻ¯ āĻ˛āĻŋāĻāĨ¤
āĻāĻ¤ā§āĻ¤āĻ°: āĻāĻāĻŦā§āĻāĻĒāĻ¤ā§āĻ°ā§ āĻāĻĻā§āĻāĻŋāĻĻā§āĻ° āĻŽā§āĻ˛ā§āĻ° āĻ āĻ¨ā§āĻ¤āĻ°ā§āĻāĻ āĻ¨āĻāĻ¤ āĻļāĻ¨āĻžāĻā§āĻ¤āĻāĻžāĻ°ā§ āĻŦā§āĻļāĻŋāĻˇā§āĻā§āĻ¯āĻ¸āĻŽā§āĻš:
- āĻ¤ā§āĻŦāĻā§ āĻāĻŋāĻāĻāĻŋāĻāĻ˛ āĻ āĻ¨ā§āĻĒāĻ¸ā§āĻĨāĻŋāĻ¤āĨ¤ āĻāĻ¤ā§ āĻāĻāĻā§āĻˇā§ āĻ°ā§āĻŽ āĻāĻā§āĨ¤
- āĻ āĻ§āĻāĻ¤ā§āĻŦāĻ āĻ āĻ¨ā§āĻĒāĻ¸ā§āĻĨāĻŋāĻ¤āĨ¤
- āĻĒāĻ°āĻŋāĻāĻā§āĻ° āĻāĻāĻ¸āĻžāĻ°āĻŋ āĻā§āĻˇ āĻĻāĻŋāĻ¯āĻŧā§ āĻāĻ āĻŋāĻ¤āĨ¤
- āĻāĻžāĻ¸ā§āĻā§āĻ˛āĻžāĻ° āĻŦāĻžāĻ¨ā§āĻĄāĻ˛ āĻ āĻ°ā§āĻ¯āĻŧ āĻāĻŦāĻ āĻāĻāĻžāĻ¨ā§āĻ¤āĻ°āĻāĻžāĻŦā§ āĻ¸āĻā§āĻāĻŋāĻ¤āĨ¤
-
āĻŽā§āĻāĻžāĻāĻžāĻāĻ˛ā§āĻŽ āĻā§āĻ¨ā§āĻĻā§āĻ°ā§āĻ° āĻĻāĻŋāĻā§ āĻāĻŦāĻ āĻĒā§āĻ°ā§āĻā§āĻāĻžāĻāĻ˛ā§āĻŽ āĻĒāĻ°āĻŋāĻ§āĻŋāĻ°
āĻĻāĻŋāĻā§ āĻ āĻŦāĻ¸ā§āĻĨāĻŋāĻ¤āĨ¤ - āĻāĻžāĻāĻ˛ā§āĻŽ āĻŦāĻž āĻĢā§āĻ˛ā§āĻ¯āĻŧā§āĻŽ āĻā§āĻā§āĻā§āĻ° āĻ¸āĻāĻā§āĻ¯āĻž āĻāĻ¯āĻŧ āĻāĻ° āĻ āĻ§āĻŋāĻ |
15. āĻāĻŖ āĻĒāĻ°ā§āĻ¯āĻ¨ā§āĻ¤ āĻŽāĻžāĻ¨ā§āĻˇā§āĻ° āĻļā§āĻ°ā§āĻŖāĻŋāĻŦāĻŋāĻ¨ā§āĻ¯āĻžāĻ¸ āĻāĻ° (āĻĒāĻ°ā§āĻŦ, āĻāĻĒ-āĻĒāĻ°ā§āĻŦ, āĻļā§āĻ°ā§āĻŖāĻŋ, āĻŦāĻ°ā§āĻ, āĻā§āĻ¤ā§āĻ°āĻ¸āĻš)āĨ¤
āĻāĻ¤ā§āĻ¤āĻ°: āĻŽāĻžāĻ¨ā§āĻˇā§āĻ° āĻļā§āĻ°ā§āĻŖāĻŋāĻŦāĻŋāĻ¨ā§āĻ¯āĻžāĻ¸:
āĻĒāĻ°ā§āĻŦ – Chordata
āĻāĻĒāĻĒāĻ°ā§āĻŦ – Vertebrata
āĻļā§āĻ°ā§āĻŖāĻŋ – Mammalia
āĻŦāĻ°ā§āĻ â Primates
āĻāĻĒāĻŦāĻ°ā§āĻ – Hominoidea
āĻā§āĻ¤ā§āĻ° – Hominidae
āĻāĻŖ – Homo
16. āĻ¨āĻŋāĻŽā§āĻ¨ā§āĻā§āĻ¤ āĻĒā§āĻ°āĻžāĻŖā§āĻĻā§āĻ° āĻŦā§āĻā§āĻāĻžāĻ¨āĻŋāĻ āĻ¨āĻžāĻŽ āĻ˛āĻŋāĻāĨ¤
a. āĻā§āĻ˛āĻā§āĻŽāĻŋ | b. āĻāĻĒā§āĻ˛ āĻļāĻžāĻŽā§āĻ | c. āĻā§āĻāĻ |
d. āĻ°ā§āĻāĻŽāĻžāĻ | e. āĻāĻĄāĻŧāĻŋāĻ¯āĻŧāĻžāĻ˛ | f. āĻĻā§āĻ¯āĻŧā§āĻ˛ |
āĻāĻ¤ā§āĻ¤āĻ°: āĻĒā§āĻ°āĻžāĻŖā§āĻĻā§āĻ° āĻŦā§āĻā§āĻāĻžāĻ¨āĻŋāĻ āĻ¨āĻžāĻŽ āĻ¨āĻŋāĻā§ āĻāĻ˛ā§āĻ˛ā§āĻ āĻāĻ°āĻž āĻšāĻ˛ā§:
āĻĒā§āĻ°āĻžāĻŖā§āĻ° āĻ¨āĻžāĻŽ | āĻŦā§āĻā§āĻāĻžāĻ¨āĻŋāĻ āĻ¨āĻžāĻŽ |
(a) āĻā§āĻ˛āĻā§āĻŽāĻŋ | Ascaris lambricoides |
(b) āĻāĻĒā§āĻ˛ āĻļāĻžāĻŽā§āĻ | Pila globosa |
(c) āĻā§āĻāĻ | Hiradinaria manillensis |
(d) āĻ°ā§āĻāĻŽāĻžāĻ | Labeo rohita |
(e) āĻāĻĄāĻŧāĻŋāĻ¯āĻŧāĻžāĻ˛ | Gavialis gangeticus |
(f) āĻĻā§āĻ¯āĻŧā§āĻ˛ | Copsychus saularis |
āĻŦāĻžāĻāĻ˛āĻž
17. āĻ¸āĻžāĻ°āĻŽāĻ°ā§āĻŽ āĻ˛ā§āĻ (āĻ
āĻ¨āĻ§āĻŋāĻ āĻāĻžāĻ° āĻŦāĻžāĻā§āĻ¯ā§) :
āĻāĻ¸āĻŋāĻ¤ā§āĻā§ āĻļā§āĻāĻĻāĻŋāĻ¨,
āĻĻāĻŋāĻ¨ā§ āĻĻāĻŋāĻ¨ā§ āĻŦāĻšā§ āĻŦāĻžāĻĄāĻŧāĻŋāĻ¯āĻŧāĻžāĻā§ āĻĻā§āĻ¨āĻž, āĻļā§āĻ§āĻŋāĻ¤ā§ āĻšāĻāĻŦā§ āĻāĻŖ!
āĻšāĻžāĻ¤ā§āĻĄāĻŧāĻŋ āĻļāĻžāĻŦāĻ˛ āĻāĻžāĻāĻāĻ¤āĻŋ āĻāĻžāĻ˛āĻžāĻ¯āĻŧā§ āĻāĻžāĻāĻŋāĻ˛ āĻ¯āĻžāĻ°āĻž āĻĒāĻžāĻšāĻžāĻĄāĻŧ,
āĻĒāĻžāĻšāĻžāĻĄāĻŧ-āĻāĻžāĻāĻž āĻ¸ā§ āĻĒāĻĨā§āĻ° āĻĻā§āĻĒāĻžāĻļā§ āĻĒāĻĄāĻŧāĻŋāĻ¯āĻŧāĻž āĻ¯āĻžāĻĻā§āĻ° āĻšāĻžāĻĄāĻŧ,
āĻ¤ā§āĻŽāĻžāĻ°ā§ āĻ¸ā§āĻŦāĻŋāĻ¤ā§ āĻšāĻāĻ˛ āĻ¯āĻžāĻšāĻžāĻ°āĻž āĻŽāĻā§āĻ°, āĻŽā§āĻā§ āĻ āĻā§āĻ˛āĻŋ,
āĻ¤ā§āĻŽāĻžāĻ°ā§ āĻŦāĻšāĻŋāĻ¤ā§ āĻ¯āĻžāĻ°āĻž āĻĒāĻŦāĻŋāĻ¤ā§āĻ° āĻ
āĻā§āĻā§ āĻ˛āĻžāĻāĻžāĻ˛ āĻ§ā§āĻ˛āĻŋ;
āĻ¤āĻžāĻ°āĻžāĻ āĻŽāĻžāĻ¨ā§āĻˇ, āĻ¤āĻžāĻ°āĻžāĻ āĻĻā§āĻŦāĻ¤āĻž, āĻāĻžāĻšāĻŋ āĻ¤āĻžāĻšāĻžāĻĻā§āĻ°āĻŋ āĻāĻžāĻ¨,
āĻ¤āĻžāĻĻā§āĻ° āĻŦā§āĻ¯āĻĨāĻŋāĻ¤ āĻŦāĻā§āĻˇā§ āĻĒāĻž āĻĢā§āĻ˛ā§ āĻāĻ¸ā§ āĻ¨āĻŦ āĻāĻ¤ā§āĻĨāĻžāĻ¨!
āĻ¸āĻžāĻ°āĻŽāĻ°ā§āĻŽ: āĻļā§āĻ°āĻŽāĻā§āĻŦā§ āĻŽāĻžāĻ¨ā§āĻˇā§āĻ° āĻļā§āĻ°āĻŽā§-āĻāĻžāĻŽā§ āĻ āĻ°āĻā§āĻ¤ā§ āĻā§āĻŦāĻ¨ā§āĻ° āĻŦāĻŋāĻ¨āĻŋāĻŽāĻ¯āĻŧā§ āĻāĻĄāĻŧā§ āĻāĻ ā§āĻā§ āĻ¸ā§āĻŦāĻžāĻā§āĻāĻ¨ā§āĻĻā§āĻ¯āĻŽāĻ¯āĻŧ āĻ¸āĻā§āĻ¯āĻ¤āĻžāĨ¤ āĻ¤āĻžāĻĻā§āĻ° āĻ¨āĻŋāĻ°āĻ˛āĻ¸ āĻĒāĻ°āĻŋāĻļā§āĻ°āĻŽā§ āĻāĻŽāĻ°āĻž āĻ¸ā§āĻā§ āĻĻāĻŋāĻ¨āĻ¯āĻžāĻĒāĻ¨ āĻāĻ°āĻ¤ā§ āĻ¸āĻā§āĻˇāĻŽ āĻšāĻ¯āĻŧā§āĻāĻŋāĨ¤ āĻāĻŋāĻ¨ā§āĻ¤ā§ āĻ¸āĻŽāĻžāĻā§ āĻ āĻĻā§āĻŦāĻ¤āĻžāĻ¤ā§āĻ˛ā§āĻ¯ āĻŽāĻžāĻ¨ā§āĻˇ āĻ¨āĻžāĻ¨āĻžāĻāĻžāĻŦā§ āĻļā§āĻˇāĻŋāĻ¤, āĻŦāĻā§āĻāĻŋāĻ¤ āĻ āĻāĻĒā§āĻā§āĻˇāĻŋāĻ¤āĨ¤ āĻāĻ°āĻžāĻ āĻāĻāĻĻāĻŋāĻ¨
āĻ¨āĻŦāĻāĻžāĻāĻ°āĻŖā§āĻ° āĻŽāĻ§ā§āĻ¯āĻĻāĻŋāĻ¯āĻŧā§ āĻŦāĻŋāĻļā§āĻŦā§ āĻĒāĻžāĻ˛āĻžāĻŦāĻĻāĻ˛ā§āĻ° āĻ¸ā§āĻāĻ¨āĻž āĻāĻ°āĻŦā§āĨ¤
18. āĻāĻžāĻŦ āĻ¸āĻŽā§āĻĒā§āĻ°āĻ¸āĻžāĻ°āĻŖ āĻāĻ° (āĻ
āĻ¨āĻ§āĻŋāĻ āĻāĻ¯āĻŧ āĻŦāĻžāĻā§āĻ¯ā§) :
āĻā§āĻ°āĻ¨ā§āĻĨāĻāĻ¤ āĻŦāĻŋāĻĻā§āĻ¯āĻž āĻāĻ° āĻĒāĻ°āĻšāĻ¸ā§āĻ¤ā§ āĻ§āĻ¨āĨ¤
āĻ¨āĻšā§ āĻŦāĻŋāĻĻā§āĻ¯āĻž, āĻ¨āĻšā§ āĻ§āĻ¨, āĻšāĻ˛ā§ āĻĒā§āĻ°ā§ā§āĻāĻ¨āĨ¤
āĻŽā§āĻ˛āĻāĻžāĻŦ: āĻ
āĻ°ā§āĻāĻŋāĻ¤ āĻ¸āĻŽā§āĻĒāĻĻ āĻ āĻ
āĻ°ā§āĻāĻŋāĻ¤ āĻā§āĻāĻžāĻ¨ āĻ¯āĻĨāĻžāĻ¸āĻŽāĻ¯āĻŧā§ āĻāĻžāĻā§ āĻ˛āĻžāĻāĻžāĻ¨ā§āĨ¤ āĻā§āĻ˛ā§āĻ āĻļā§āĻ§ā§ āĻ¸āĻžāĻ°ā§āĻĨāĻāĻ¤āĻž āĻĒā§āĻ°āĻŽāĻžāĻŖāĻŋāĻ¤ āĻšāĻ¤ā§ āĻĒāĻžāĻ°ā§āĨ¤ āĻāĻŋāĻ¨ā§āĻ¤ā§ āĻ¯ā§ āĻā§āĻāĻžāĻ¨ āĻ āĻ
āĻ°ā§āĻĨāĻ¸āĻŽā§āĻĒāĻĻ āĻŽāĻžāĻ¨ā§āĻˇā§āĻ° āĻĒā§āĻ°ā§ā§āĻāĻ¨ā§āĻ° āĻ¸āĻŽāĻ¯āĻŧ āĻāĻžāĻā§ āĻ˛āĻžāĻāĻžāĻ¨ā§ āĻ¯āĻžāĻ¯āĻŧ āĻ¨āĻž, āĻ¤āĻžāĻ° āĻā§āĻ¨ā§ āĻŽā§āĻ˛ā§āĻ¯ āĻ¨ā§āĻāĨ¤
āĻāĻžāĻŦ āĻ¸āĻŽā§āĻĒā§āĻ°āĻ¸āĻžāĻ°āĻŖ: āĻā§āĻ°āĻ¨ā§āĻĨāĻāĻ¤ āĻŦāĻŋāĻĻā§āĻ¯āĻž āĻ¯āĻž āĻāĻ¤ā§āĻŽāĻ¸ā§āĻĨ āĻāĻ°āĻž āĻšāĻ¯āĻŧāĻ¨āĻŋ āĻāĻŦāĻ āĻāĻŽāĻ¨ āĻ§āĻ¨-āĻ¸āĻŽā§āĻĒāĻĻ āĻ¯āĻž āĻ¨āĻŋāĻā§āĻ° āĻāĻ°āĻžāĻ¯āĻŧāĻ¤ā§āĻ¤ āĻšāĻ¯āĻŧāĻ¨āĻŋ- āĻ āĻ¸āĻŽāĻ¸ā§āĻ¤āĻ āĻ¨āĻŋāĻ°āĻ°ā§āĻĨāĻāĨ¤ āĻāĻžāĻ°āĻŖāĨ¤ āĻĒā§āĻ°ā§ā§āĻāĻ¨ā§āĻ¯āĻŧ āĻŽā§āĻšā§āĻ°ā§āĻ¤ā§ āĻāĻā§āĻ˛ā§āĻ° āĻ¯āĻĨāĻžāĻ¯āĻĨ āĻŦā§āĻ¯āĻŦāĻšāĻžāĻ° āĻāĻ°āĻž āĻ¸āĻŽā§āĻāĻŦ āĻšāĻ¯āĻŧ āĻ¨āĻžāĨ¤ āĻĒā§āĻĨāĻŋāĻŦā§āĻ¤ā§ āĻŽāĻžāĻ¨ā§āĻˇā§āĻ° āĻā§āĻŦāĻ¨ā§ āĻ§āĻ¨-āĻ¸āĻŽā§āĻĒāĻĻ āĻ āĻŦāĻŋāĻĻā§āĻ¯āĻžāĻ° āĻā§āĻ°ā§āĻ¤ā§āĻŦāĨ¤ āĻ
āĻĒāĻ°āĻŋāĻ¸ā§āĻŽāĨ¤ āĻāĻŋāĻ¨ā§āĻ¤ā§ āĻŦāĻŋāĻĻā§āĻ¯āĻž āĻ¯āĻĻāĻŋ āĻā§āĻ°āĻ¨ā§āĻĨā§āĻ° āĻā§āĻ¤āĻ°ā§āĻ āĻŽāĻ˛āĻžāĻāĻŦāĻĻā§āĻ§ āĻ
āĻŦāĻ¸ā§āĻĨāĻžāĻ¯āĻŧāĨ¤ āĻ
āĻŦā§āĻ¯āĻŦāĻšā§āĻ¤ āĻšāĻ¯āĻŧā§ āĻĒāĻĄāĻŧā§ āĻĨāĻžāĻā§, āĻŽāĻžāĻ¨ā§āĻˇ āĻ¯āĻĻāĻŋ āĻ¤āĻž āĻāĻ¤ā§āĻŽāĻ¸ā§āĻĨ āĻ¨āĻž āĻāĻ°ā§ āĻāĻŋāĻāĻŦāĻž āĻāĻ¤ā§āĻŽāĻ¸ā§āĻĨ āĻāĻ°ā§ āĻāĻ˛āĻŽāĻžāĻ¨ āĻā§āĻŦāĻ¨ā§ āĻāĻžāĻā§ āĻ˛āĻžāĻāĻžāĻ¤ā§ āĻ¨āĻž āĻĒāĻžāĻ°ā§, āĻ¤āĻŦā§ āĻ¸ā§ āĻŦāĻŋāĻĻā§āĻ¯āĻž āĻŽā§āĻ˛āĻ¤ āĻā§āĻ¨ā§ āĻŦāĻŋāĻĻā§āĻ¯āĻžāĻ āĻ¨āĻ¯āĻŧ āĨ¤ āĻŽāĻ˛āĻžāĻāĻŦāĻĻā§āĻ§ āĻā§āĻ°āĻ¨ā§āĻĨā§āĻ° āĻŦāĻŋāĻĻā§āĻ¯āĻžāĻā§ āĻŽāĻžāĻ¨ā§āĻˇā§āĻ° āĻā§āĻŦāĻ¨ā§ āĻĒā§āĻ°ā§ā§āĻ āĻāĻ°āĻ¤ā§ āĻšāĻŦā§āĨ¤ āĻ¤āĻŦā§āĻ āĻ¸ā§ āĻŦāĻŋāĻĻā§āĻ¯āĻž āĻĒā§āĻĨāĻŋāĻŦā§āĻ° āĻŽāĻžāĻ¨ā§āĻˇā§āĻ° āĻāĻ˛ā§āĻ¯āĻžāĻŖ āĻŦāĻ¯āĻŧā§ āĻāĻ¨āĻŦā§āĨ¤ āĻ
āĻ¨ā§āĻ¯āĻĻāĻŋāĻā§, āĻ¨āĻŋāĻā§āĻ° āĻ
āĻ°ā§āĻāĻŋāĻ¤ āĻ§āĻ¨āĻ¸āĻŽā§āĻĒāĻ¤ā§āĻ¤āĻŋ āĻ¯āĻĻāĻŋ āĻ
āĻ¨ā§āĻ¯ā§āĻ° āĻāĻžāĻā§ āĻ°āĻā§āĻˇāĻŋāĻ¤ āĻĨāĻžāĻā§, āĻ¤āĻŦā§ āĻĒā§āĻ°ā§ā§āĻāĻ¨ā§āĻ° āĻ¸āĻŽāĻ¯āĻŧ āĻ¸ā§āĻ āĻ¸āĻŽā§āĻĒāĻ¤ā§āĻ¤āĻŋ āĻāĻĻā§āĻ§āĻžāĻ° āĻāĻ°āĻžāĻ āĻ
āĻ¨ā§āĻ āĻ¸āĻŽāĻ¯āĻŧ āĻ¸āĻŽāĻ¸ā§āĻ¯āĻž āĻšāĻ¯āĻŧā§ āĻĻāĻžāĻāĻĄāĻŧāĻžāĻ¯āĻŧ āĨ¤ āĻŦāĻ°āĻ āĻ¨āĻŋāĻā§āĻ° āĻāĻžāĻā§ āĻĨāĻžāĻāĻž āĻ¸āĻŽā§āĻĒāĻ¤ā§āĻ¤āĻŋāĻ āĻĒā§āĻ°ā§ā§āĻāĻ¨ā§āĻ° āĻ¸āĻŽāĻ¯āĻŧ āĻŦā§āĻ¯āĻŦāĻšāĻžāĻ° āĻāĻ°āĻž āĻ¸āĻŽā§āĻāĻŦāĨ¤ āĻ¸ā§āĻ¤āĻ°āĻžāĻ āĻ¸āĻžāĻ°ā§āĻĨāĻ āĻ āĻ¸ā§āĻ¨ā§āĻĻāĻ° āĻā§āĻŦāĻ¨ā§āĻ° āĻĒā§āĻ°ā§ā§āĻāĻ¨ā§ āĻŦāĻŋāĻĻā§āĻ¯āĻžāĻā§ āĻā§āĻ°āĻ¨ā§āĻĨā§āĻ° āĻŦāĻ¨ā§āĻĻāĻŋāĻļāĻžāĻ˛āĻž āĻšāĻ¤ā§ āĻŽā§āĻā§āĻ¤ āĻāĻ°ā§ āĻāĻ¤ā§āĻŽāĻ¸ā§āĻĨ āĻāĻ°āĻ¤ā§ āĻšāĻŦā§, āĻĒāĻ°ā§āĻ° āĻšāĻžāĻ¤ā§ āĻ°āĻā§āĻˇāĻŋāĻ¤ āĻ¸āĻŽā§āĻĒāĻ¤ā§āĻ¤āĻŋ āĻ¨āĻŋāĻā§āĻ° āĻāĻ°āĻžāĻ¯āĻŧāĻ¤ā§āĻ¤ āĻāĻ°āĻ¤ā§ āĻšāĻŦā§āĨ¤ āĻŦāĻŋāĻĻā§āĻ¯āĻž āĻ āĻ¸āĻŽā§āĻĒāĻĻ āĻ¤āĻāĻ¨āĻ āĻ¸āĻžāĻ°ā§āĻĨāĻ āĻšāĻ¯āĻŧā§ āĻāĻ ā§ āĻ¯āĻāĻ¨ āĻŽāĻžāĻ¨ā§āĻˇā§āĻ° āĻ¯āĻĨāĻžāĻ°ā§āĻĨ āĻĒā§āĻ°ā§ā§āĻāĻ¨ āĻŽāĻŋāĻāĻžāĻ¯āĻŧ āĨ¤ āĻāĻŋāĻ¨ā§āĻ¤ā§ āĻŽāĻžāĻ¨ā§āĻˇā§āĻ° āĻ¯āĻĨāĻžāĻ°ā§āĻĨ āĻĒā§āĻ°ā§ā§āĻāĻ¨ā§ āĻ¯āĻĻāĻŋ āĻ¤āĻž āĻāĻžāĻā§ āĻ¨āĻž āĻ˛āĻžāĻāĻžāĻ¨ā§ āĻ¯āĻžāĻ¯āĻŧ, āĻ¤āĻŦā§ āĻ¸ā§āĻ āĻŦāĻŋāĻĻā§āĻ¯āĻž āĻ āĻ
āĻ°ā§āĻĨ āĻŦāĻŋāĻĢāĻ˛āĻ¤āĻžāĻ° āĻ¨āĻžāĻŽāĻžāĻ¨ā§āĻ¤āĻ°āĨ¤
āĻŽāĻ¨ā§āĻ¤āĻŦā§āĻ¯: āĻĒāĻ°āĻŋāĻļā§āĻˇā§ āĻŦāĻ˛āĻž āĻ¯āĻžāĻ¯āĻŧ āĻā§āĻāĻžāĻ¨ āĻ āĻŦāĻŋāĻĻā§āĻ¯āĻž āĻā§āĻŦāĻ¨ā§āĻ° āĻāĻžāĻā§ āĻ˛āĻžāĻāĻžāĻ¤ā§ āĻšāĻŦā§, āĻāĻ° āĻ¤āĻžāĻ¤ā§āĻ āĻĒā§āĻ°āĻ¤āĻŋāĻĒāĻ¨ā§āĻ¨ āĻšāĻŦā§ āĻŽāĻžāĻ¨āĻŦāĻā§āĻŦāĻ¨ā§āĻ° āĻ¸āĻžāĻ°ā§āĻĨāĻāĻ¤āĻžāĨ¤ āĻā§āĻ¨āĻ¨āĻž, āĻĒā§āĻ°ā§ā§āĻāĻ¨ā§āĻ° āĻ¸āĻŽāĻ¯āĻŧ āĻ¸āĻŽā§āĻĒāĻĻ āĻ āĻŦāĻŋāĻĻā§āĻ¯āĻž āĻ¨āĻŋāĻā§āĻ° āĻšāĻ¸ā§āĻ¤āĻāĻ¤ āĻĨāĻžāĻāĻž āĻ
āĻĒāĻ°āĻŋāĻšāĻžāĻ°ā§āĻ¯āĨ¤
19. āĻŦāĻžāĻāĻ˛āĻžāĻĻā§āĻļā§āĻ° āĻŽā§āĻā§āĻ¤āĻŋāĻ¯ā§āĻĻā§āĻ§â āĻ¨āĻŋāĻ¯āĻŧā§ ā§ŦāĻāĻŋ āĻŦāĻžāĻā§āĻ¯ āĻ˛ā§āĻāĨ¤
āĻāĻ¤ā§āĻ¤āĻ° : āĻŦāĻžāĻāĻžāĻ˛āĻŋāĻ° āĻāĻžāĻ¤ā§āĻ¯āĻŧ āĻā§āĻŦāĻ¨ā§ āĻ¸āĻŦāĻā§āĻ¯āĻŧā§ āĻā§āĻ°āĻŦā§āĻā§āĻā§āĻŦāĻ˛ āĻāĻāĻ¨āĻž āĻŦāĻžāĻāĻ˛āĻžāĻĻā§āĻļā§āĻ° āĻŽā§āĻā§āĻ¤āĻŋāĻ¯ā§āĻĻā§āĻ§āĨ¤ ā§§ā§¯ā§ā§§ āĻ¸āĻžāĻ˛ā§ āĻŽā§āĻā§āĻ¤āĻŋāĻ¯ā§āĻĻā§āĻ§ā§āĻ° āĻŽāĻ§ā§āĻ¯ āĻĻāĻŋāĻ¯āĻŧā§āĻ āĻŦāĻžāĻāĻžāĻ˛āĻŋ āĻ¸ā§āĻŦāĻžāĻ§ā§āĻ¨ āĻāĻžāĻ¤āĻŋ āĻšāĻŋāĻ¸ā§āĻŦā§ āĻ¸āĻžāĻ°āĻž āĻŦāĻŋāĻļā§āĻŦā§ āĻĒāĻ°āĻŋāĻāĻŋāĻ¤āĻŋ āĻ˛āĻžāĻ āĻāĻ°ā§āĨ¤ āĻŦāĻžāĻāĻžāĻ˛āĻŋ āĻāĻžāĻ¤āĻŋ ā§§ā§¯ā§ā§§ āĻ¸āĻžāĻ˛ā§ āĻŦāĻā§āĻāĻŦāĻ¨ā§āĻ§ā§āĻ° ā§ āĻŽāĻžāĻ°ā§āĻā§āĻ° āĻāĻžāĻˇāĻŖā§ āĻ
āĻ¨ā§āĻĒā§āĻ°āĻžāĻŖāĻŋāĻ¤ āĻšāĻ¯āĻŧā§ āĻ¸ā§āĻŦāĻ¤āĻāĻ¸ā§āĻĢā§āĻ°ā§āĻ¤āĻāĻžāĻŦā§ āĻŽā§āĻā§āĻ¤āĻŋāĻ¯ā§āĻĻā§āĻ§ā§ āĻ¯ā§āĻāĻĻāĻžāĻ¨ āĻāĻ°ā§āĻāĻŋāĻ˛āĨ¤ ā§§ā§¯ā§ā§§ āĻ¸āĻžāĻ˛ā§āĻ° ā§§ā§Ļ āĻāĻĒā§āĻ°āĻŋāĻ˛ āĻāĻ āĻŋāĻ¤ āĻŽā§āĻāĻŋāĻŦāĻ¨āĻāĻ° āĻ¸āĻ°āĻāĻžāĻ° āĻŦāĻžāĻāĻ˛āĻžāĻĻā§āĻļā§āĻ° āĻ°āĻŖāĻžāĻā§āĻāĻ¨āĻā§ ā§§ā§§āĻāĻŋ āĻ¸ā§āĻā§āĻāĻ°ā§ āĻāĻžāĻ āĻāĻ°ā§ āĻĒā§āĻ°āĻ¤ā§āĻ¯ā§āĻāĻāĻŋāĻ° āĻāĻ¨ā§āĻ¯ āĻāĻāĻāĻ¨ āĻāĻ°ā§ āĻ¸ā§āĻā§āĻāĻ° āĻāĻŽāĻžāĻ¨ā§āĻĄāĻžāĻ°āĻ āĻ¨āĻŋāĻ¯ā§āĻā§āĻ¤ āĻāĻ°ā§āĻ¨āĨ¤ āĻāĻāĻžāĻŦā§āĻ āĻ
āĻ¸ā§āĻĨāĻžāĻ¯āĻŧā§ āĻ¸āĻ°āĻāĻžāĻ°ā§āĻ° āĻ¤āĻ¤ā§āĻ¤ā§āĻŦāĻžāĻŦāĻ§āĻžāĻ¨ā§ āĻĻā§āĻ°ā§āĻ āĻ¨āĻ¯āĻŧ āĻŽāĻžāĻ¸ā§āĻ° āĻ¸āĻļāĻ¸ā§āĻ¤ā§āĻ° āĻŽā§āĻā§āĻ¤āĻŋāĻ¯ā§āĻĻā§āĻ§ā§āĻ° āĻĒāĻ° āĻŦāĻžāĻāĻ˛āĻžāĻĻā§āĻļ āĻ
āĻŦāĻļā§āĻˇā§ āĻ¸ā§āĻŦāĻžāĻ§ā§āĻ¨āĻ¤āĻžāĻ° āĻ˛āĻžāĻ˛ āĻ¸ā§āĻ°ā§āĻ¯ āĻāĻŋāĻ¨āĻŋāĻ¯āĻŧā§ āĻāĻ¨āĻ¤ā§ āĻ¸āĻā§āĻˇāĻŽ āĻšāĻ¯āĻŧāĨ¤ āĻŽā§āĻā§āĻ¤āĻŋāĻ¯ā§āĻĻā§āĻ§ā§āĻ° āĻ¸āĻŽāĻ¯āĻŧ āĻĻā§āĻļāĻŽāĻžāĻ¤ā§āĻāĻžāĻ° āĻāĻžāĻ¨ā§ āĻŦāĻžāĻāĻ˛āĻžāĻĻā§āĻļā§āĻ° āĻŽāĻžāĻ¨ā§āĻˇ āĻāĻ¤ā§āĻŽāĻ¤ā§āĻ¯āĻžāĻā§āĻ° āĻ¯ā§ āĻĻā§āĻˇā§āĻāĻžāĻ¨ā§āĻ¤ āĻ°ā§āĻā§āĻā§ āĻ¤āĻž āĻāĻ¤āĻŋāĻšāĻžāĻ¸ā§ āĻŦāĻŋāĻ°āĻ˛ āĻ¤āĻžāĻāĻ¤ā§ āĻāĻŦāĻŋ āĻ¸ā§āĻāĻžāĻ¨ā§āĻ¤ āĻāĻā§āĻāĻžāĻāĻžāĻ°ā§āĻ¯ā§āĻ° āĻāĻŖā§āĻ ā§ āĻ§ā§āĻŦāĻ¨āĻŋāĻ¤ āĻšāĻ¯āĻŧā§āĻā§-
āĻ¸āĻžāĻŦāĻžāĻ¸ āĻŦāĻžāĻāĻ˛āĻžāĻĻā§āĻļ, āĻ āĻĒā§āĻĨāĻŋāĻŦā§āĨ¤
āĻ
āĻŦāĻžā§°ā§ āĻ¤āĻžāĻāĻŋāĻ¯āĻŧā§ āĻ°āĻ¯āĻŧ;
āĻā§āĻŦāĻ˛ā§-āĻĒā§āĻĄāĻŧā§-āĻŽāĻ°ā§ āĻāĻžāĻ°āĻāĻžāĻ°
āĻ¤āĻŦā§ āĻŽāĻžāĻĨāĻž āĻ¨ā§āĻ¯āĻŧāĻžāĻŦāĻžāĻ° āĻ¨āĻ¯āĻŧāĨ¤
20. āĻŦāĻŋāĻĒāĻ°ā§āĻ¤ āĻļāĻŦā§āĻĻ āĻ˛ā§āĻ :
āĻāĻ¸āĻŽāĻžāĻ¨
āĻ¸ā§āĻĨā§āĻ˛āĻŦā§āĻĻā§āĻ§āĻŋ
āĻāĻžāĻ˛ā§āĻĒāĻ¨āĻŋāĻ
āĻāĻ¤ā§āĻ¤āĻ°
āĻļā§āĻŦā§āĻĻ | āĻŦāĻŋāĻĒāĻ°ā§āĻ¤ āĻļāĻŦā§āĻĻ |
āĻāĻ¸āĻŽāĻžāĻ¨ | āĻāĻŽāĻŋāĻ¨ |
āĻ¸ā§āĻā§āĻ˛āĻŦā§āĻĻā§āĻ§āĻŋ | āĻ¸ā§āĻā§āĻˇā§āĻŽāĻŦā§āĻĻā§āĻ§āĻŋ |
āĻāĻžāĻ˛ā§āĻĒāĻ¨āĻŋāĻ | āĻŦāĻžāĻ¸ā§āĻ¤āĻŦāĻŋāĻ |
English
21. Hold fast to dreams
For if dreams die
Life is a broken-winged bird
That cannot fly
Which poem are these lines taken from? Who is the writer of the poem? What does he mean by “Life is a broken-winged bird”?
Ans: These lines are taken from the poem Dreams written by American poet James Mercer Langston Hughes (1902-1967). The poem is quite short, comprising of two stanzas only including eight lines long. Langston Hughes starts out his poem, Dreams by immediately concerning readers with a piece of advice: ‘Hold fast to dreams’ In the very first line, he mentions the readers about the importance of dreams in our life. The dreams of future progress our life and help to achieve the goals. If our dreams die, our life can be brutal, meaningless and hopeless. The poet uses the phrase ‘a broken-winged bird’ at three line in the first stanza as a metaphor. In literature, the bird symbolizes hope, ecstasy and liberty. âBrokenwinged bird’ means hopeless, joylessness and slavery. The poet means by the line ‘Life is a brokenwinged bird’ that a person becomes purposeless and hopeless without dreams.
22. Write six sentences on ‘The influcence of culture
on adolescents’
Ans: The influence of culture for on adolescence Adolescence is a stage of development, a period of transition between childhood and adulthood. All adolescents go through changes; physical changes, social and emotional changes and the process of developing their individual identity. They came from different backgrounds are influenced by different cultural norms and different attitudes towards values and norms in society. Parents and family life are the foundations for building an adolescence’s personality and identity, instilling values and social norms. Parenting practices are influenced by culture and an adolescent’s upbringing is affected by ethnic group, values and traditions that he belongs to. So culture has a strong influence on development, behavior, values and beliefs. Family rituals and good communication have a positive affect on adolescents. Parents who instill positive cultural values and beliefs in their children help raise their self-cteem and
academic success.
23. Write six sentences on the importance of
biodiversity for our livelihood.
Ans: The importance of biodiversity for our livelihood Biodiversity is the existence of a large number of different kinds of animals and plants which make a balanced environment. Millions people depend on nature and species for their day-to-day livelihood. Biodiversity has an important role for our livelihood. Because biodiversity provides many sources of food, fuel, medicines and other products of natural materials. People can use these for earning source. Nature-related tourism is also a significant income generator for many people.
24. What is rhyme? why do writers use rhyme in poems?
Ans: Rhyme: Rhyme is a repetition of similar sounding words, occuring at the end of lines in poem or songs. A rhyme is a tool utilizing repeating patterns that bring rhythm or musicality to poems.
“Shall I compare thee to a summer’s day?
Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May, And summer’s lease hath all too short a date:’ (Sonnet 18 by William Shakespeare) There are different types of rhymes used in poems.
- End Rhyme
- Internal Rhyme
- Slant Rhyme
- Rich Rhyme
- Eye Rhyme
- Identical Rhyme
The writers make a poem musical to readers by using the rhyme. The writers use it to make a poem musical and